
1/102

Vidlička youtube-dl s dalšími funkcemi a opravami
github.com/yt-dlp/yt-dlp

DOWNLOAD V2023.07.06

PYPI

DONATE

152 USERS

1820 ONLINE

SUPPORTED SITES

UNLICENSE

TESTS PASSING

COMMITS 22/MONTH

LAST THURSDAY

yt-dlp is a youtube-dl fork based on the now inactive youtube-dlc.
The main focus of this project is adding new features and patches
while also keeping up to date with the original project

EXTRACTOR ARGUMENTS
EMBEDDING YT-DLP

Embedding examples
DEPRECATED OPTIONS

https://github.com/yt-dlp/yt-dlp#update
https://pypi.org/project/yt-dlp
https://github.com/yt-dlp/yt-dlp/blob/master/Collaborators.md#collaborators
https://matrix.to/#/#yt-dlp:matrix.org
https://discord.gg/H5MNcFW63r
https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md
https://github.com/yt-dlp/yt-dlp/blob/master/LICENSE
https://github.com/yt-dlp/yt-dlp/actions
https://github.com/yt-dlp/yt-dlp/commits
https://github.com/yt-dlp/yt-dlp/pulse/monthly
https://github.com/ytdl-org/youtube-dl
https://github.com/blackjack4494/yt-dlc

2/102

WIKI
FAQ

NEW FEATURES

Forked from yt-dlc@f9401f2 and merged with youtube-
dl@42f2d4 (exceptions)

SponsorBlock Integration: You can mark/remove sponsor
sections in YouTube videos by utilizing the SponsorBlock API

Format Sorting: The default format sorting options have been
changed so that higher resolution and better codecs will be now
preferred instead of simply using larger bitrate. Furthermore, you
can now specify the sort order using -S. This allows for much
easier format selection than what is possible by simply using --
format (examples)

Merged with animelover1984/youtube-dl: You get most of the
features and improvements from animelover1984/youtube-dl
including --write-comments, BiliBiliSearch,
BilibiliChannel, Embedding thumbnail in mp4/ogg/opus,
playlist infojson etc. Note that NicoNico livestreams are not
available. See #31 for details.

https://github.com/yt-dlp/yt-dlp/wiki
https://github.com/yt-dlp/yt-dlp/wiki/FAQ
https://github.com/blackjack4494/yt-dlc/commit/f9401f2a91987068139c5f757b12fc711d4c0cee
https://github.com/ytdl-org/youtube-dl/commit/07af47960f3bb262ead02490ce65c8c45c01741e
https://github.com/yt-dlp/yt-dlp/issues/21
https://sponsor.ajay.app/
https://github.com/animelover1984/youtube-dl
https://github.com/yt-dlp/yt-dlp/pull/31

3/102

YouTube improvements:

Supports Clips, Stories (ytstories:<channel UCID>),
Search (including filters)*, YouTube Music Search, Channel-
specific search, Search prefixes (ytsearch:,
ytsearchdate:)*, Mixes, and Feeds (:ytfav,
:ytwatchlater, :ytsubs, :ythistory, :ytrec, :ytnotif)
Fix for n-sig based throttling *
Supports some (but not all) age-gated content without
cookies
Download livestreams from the start using --live-from-
start (experimental)
255kbps audio is extracted (if available) from YouTube
Music when premium cookies are given
Channel URLs download all uploads of the channel,
including shorts and live

Cookies from browser: Cookies can be automatically extracted
from all major web browsers using --cookies-from-browser
BROWSER[+KEYRING][:PROFILE][::CONTAINER]

Download time range: Videos can be downloaded partially
based on either timestamps or chapters using --download-
sections

Split video by chapters: Videos can be split into multiple files
based on chapters using --split-chapters

Multi-threaded fragment downloads: Download multiple
fragments of m3u8/mpd videos in parallel. Use --concurrent-
fragments (-N) option to set the number of threads used

Aria2c with HLS/DASH: You can use aria2c as the external
downloader for DASH(mpd) and HLS(m3u8) formats

New and fixed extractors: Many new extractors have been
added and a lot of existing ones have been fixed. See the
changelog or the list of supported sites

https://github.com/ytdl-org/youtube-dl/issues/29326
https://github.com/yt-dlp/yt-dlp/blob/master/Changelog.md
https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md

4/102

New MSOs: Philo, Spectrum, SlingTV, Cablevision, RCN etc.

Subtitle extraction from manifests: Subtitles can be extracted
from streaming media manifests. See commit/be6202f for details

Multiple paths and output templates: You can give different
output templates and download paths for different types of files.
You can also set a temporary path where intermediary files are
downloaded to using --paths (-P)

Portable Configuration: Configuration files are automatically
loaded from the home and root directories. See
CONFIGURATION for details

Output template improvements: Output templates can now
have date-time formatting, numeric offsets, object traversal etc.
See output template for details. Even more advanced operations
can also be done with the help of --parse-metadata and --
replace-in-metadata

Other new options: Many new options have been added such
as --alias, --print, --concat-playlist, --wait-for-video,
--retry-sleep, --sleep-requests, --convert-thumbnails, --
force-download-archive, --force-overwrites, --break-
match-filter etc

Improvements: Regex and other operators in --format/--
match-filter, multiple --postprocessor-args and --
downloader-args, faster archive checking, more format
selection options, merge multi-video/audio, multiple --config-
locations, --exec at different stages, etc

Plugins: Extractors and PostProcessors can be loaded from an
external file. See plugins for details

Self updater: The releases can be updated using yt-dlp -U,
and downgraded using --update-to if required

https://github.com/yt-dlp/yt-dlp/commit/be6202f12b97858b9d716e608394b51065d0419f

5/102

Nightly builds: Automated nightly builds can be used with --
update-to nightly

See changelog or commits for the full list of changes

Features marked with a * have been back-ported to youtube-dl

Differences in default behavior

Some of yt-dlp's default options are different from that of youtube-dl
and youtube-dlc:

yt-dlp supports only Python 3.7+, and may remove support for
more versions as they become EOL; while youtube-dl still
supports Python 2.6+ and 3.2+
The options --auto-number (-A), --title (-t) and --literal (-
l), no longer work. See removed options for details
avconv is not supported as an alternative to ffmpeg
yt-dlp stores config files in slightly different locations to youtube-
dl. See CONFIGURATION for a list of correct locations
The default output template is %(title)s [%(id)s].%(ext)s.
There is no real reason for this change. This was changed
before yt-dlp was ever made public and now there are no plans
to change it back to %(title)s-%(id)s.%(ext)s. Instead, you
may use --compat-options filename
The default format sorting is different from youtube-dl and
prefers higher resolution and better codecs rather than higher
bitrates. You can use the --format-sort option to change this
to any order you prefer, or use --compat-options format-sort
to use youtube-dl's sorting order
The default format selector is bv*+ba/b. This means that if a
combined video + audio format that is better than the best video-
only format is found, the former will be preferred. Use -f
bv+ba/b or --compat-options format-spec to revert this

https://github.com/yt-dlp/yt-dlp/blob/master/Changelog.md
https://github.com/yt-dlp/yt-dlp/commits
https://devguide.python.org/versions/#python-release-cycle
https://github.com/ytdl-org/youtube-dl/issues/30568#issue-1118238743

6/102

Unlike youtube-dlc, yt-dlp does not allow merging multiple
audio/video streams into one file by default (since this conflicts
with the use of -f bv*+ba). If needed, this feature must be
enabled using --audio-multistreams and --video-
multistreams. You can also use --compat-options
multistreams to enable both
--no-abort-on-error is enabled by default. Use --abort-on-
error or --compat-options abort-on-error to abort on errors
instead
When writing metadata files such as thumbnails, description or
infojson, the same information (if available) is also written for
playlists. Use --no-write-playlist-metafiles or --compat-
options no-playlist-metafiles to not write these files
--add-metadata attaches the infojson to mkv files in addition to
writing the metadata when used with --write-info-json. Use -
-no-embed-info-json or --compat-options no-attach-info-
json to revert this
Some metadata are embedded into different fields when using -
-add-metadata as compared to youtube-dl. Most notably,
comment field contains the webpage_url and synopsis contains
the description. You can use --parse-metadata to modify this
to your liking or use --compat-options embed-metadata to
revert this
playlist_index behaves differently when used with options like
--playlist-reverse and --playlist-items. See #302 for
details. You can use --compat-options playlist-index if you
want to keep the earlier behavior
The output of -F is listed in a new format. Use --compat-
options list-formats to revert this
Live chats (if available) are considered as subtitles. Use --sub-
langs all,-live_chat to download all subtitles except live
chat. You can also use --compat-options no-live-chat to
prevent any live chat/danmaku from downloading

https://github.com/yt-dlp/yt-dlp/issues/302

7/102

YouTube channel URLs download all uploads of the channel. To
download only the videos in a specific tab, pass the tab's URL. If
the channel does not show the requested tab, an error will be
raised. Also, /live URLs raise an error if there are no live
videos instead of silently downloading the entire channel. You
may use --compat-options no-youtube-channel-redirect to
revert all these redirections
Unavailable videos are also listed for YouTube playlists. Use --
compat-options no-youtube-unavailable-videos to remove
this
The upload dates extracted from YouTube are in UTC when
available. Use --compat-options no-youtube-prefer-utc-
upload-date to prefer the non-UTC upload date.
If ffmpeg is used as the downloader, the downloading and
merging of formats happen in a single step when possible. Use
--compat-options no-direct-merge to revert this
Thumbnail embedding in mp4 is done with mutagen if possible.
Use --compat-options embed-thumbnail-atomicparsley to
force the use of AtomicParsley instead
Some internal metadata such as filenames are removed by
default from the infojson. Use --no-clean-infojson or --
compat-options no-clean-infojson to revert this
When --embed-subs and --write-subs are used together, the
subtitles are written to disk and also embedded in the media file.
You can use just --embed-subs to embed the subs and
automatically delete the separate file. See #630 (comment) for
more info. --compat-options no-keep-subs can be used to
revert this
certifi will be used for SSL root certificates, if installed. If you
want to use system certificates (e.g. self-signed), use --compat-
options no-certifi

https://github.com/yt-dlp/yt-dlp/blob/89e4d86171c7b7c997c77d4714542e0383bf0db0/yt_dlp/extractor/youtube.py#L3898-L3900
https://github.com/yt-dlp/yt-dlp/issues/630#issuecomment-893659460

8/102

Dezinfekce neplatných znaků v názvech souborů yt-dlp je
jiná/chytřejší než u youtube-dl. Můžete použít --compat-
options filename-sanitizationk návratu k chování youtube-
dl
yt-dlp se pokusí analyzovat výstupy externího stahování do
standardního výstupu, pokud je to možné (aktuálně
implementováno:aria2c). Můžete použít --compat-options no-
external-downloader-progressk získání výstupu stahování
tak, jak je
Verze yt-dlp mezi 2021.09.01 a 2023.01.02 se vztahují --match-
filterna vnořené seznamy skladeb. Toto byl neúmyslný
vedlejší účinek 8f18ac a je opraven v d7b460 . Použijte --
compat-options playlist-match-filterk tomu, abyste to
vrátili

Pro snadné použití je k dispozici několik dalších možností
kompatibility:

--compat-options all: Použijte všechny možnosti kompatibility
(NEPOUŽÍVEJTE)
--compat-options youtube-dl: Stejný jako--compat-options
all,-multistreams,-playlist-match-filter

--compat-options youtube-dlc: Stejný jako--compat-options
all,-no-live-chat,-no-youtube-channel-redirect,-

playlist-match-filter

--compat-options 2021: Stejný jako--compat-options
2022,no-certifi,filename-sanitization,no-youtube-

prefer-utc-upload-date

--compat-options 2022: Stejné jako --compat-options
playlist-match-filter,no-external-downloader-progress.
Použijte toto k povolení všech budoucích možností kompatibility

INSTALACE

WINDOWS X64

https://github.com/yt-dlp/yt-dlp/issues/5931
https://github.com/yt-dlp/yt-dlp/commit/8f18aca8717bb0dd49054555af8d386e5eda3a88
https://github.com/yt-dlp/yt-dlp/commit/d7b460d0e5fc710950582baed2e3fc616ed98a80
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp.exe

9/102

LINUX/BSD

MACOS PYPI

SOURCE TAR

OTHER

ALL VERSIONS

Yt-dlp můžete nainstalovat pomocí binárních souborů , pip nebo
pomocí správce balíčků třetí strany. Podrobné pokyny najdete na
wiki

AKTUALIZACE

Můžete použít yt-dlp -Uk aktualizaci, pokud používáte binární
soubory vydání

Pokud jste nainstalovali pomocí pip , jednoduše znovu spusťte stejný
příkaz, který byl použit k instalaci programu

Další správci balíčků třetích stran naleznete na wiki nebo v jejich
dokumentaci

V současné době existují dva kanály vydání pro binární soubory
stablea nightly. stableje výchozí kanál a mnoho jeho změn bylo
testováno uživateli nočního kanálu. Kanál nightlymá vydání
vytvořená po každém odeslání do hlavní větve a bude mít nejnovější
opravy a doplňky, ale také má větší riziko regresí. Jsou k dispozici ve
vlastním repo .

Při použití --update/ -Use binární soubor aktualizuje pouze na svůj
aktuální kanál. --update-to CHANNELlze použít k přepnutí na jiný
kanál, když je k dispozici novější verze. --update-to
[CHANNEL@]TAGlze také použít k upgradu nebo downgradu na
konkrétní značky z kanálu.

https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_macos
https://pypi.org/project/yt-dlp
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp.tar.gz
https://github.com/yt-dlp/yt-dlp/releases
https://pypi.org/project/yt-dlp
https://github.com/yt-dlp/yt-dlp/wiki/Installation
https://github.com/yt-dlp/yt-dlp/wiki/Installation#with-pip
https://github.com/yt-dlp/yt-dlp/wiki/Installation#third-party-package-managers
https://github.com/yt-dlp/yt-dlp-nightly-builds/releases

10/102

Můžete také použít --update-to <repository>(
<owner>/<repository>) k aktualizaci na kanál ve zcela jiném
úložišti. Buďte opatrní s tím, na jaké úložiště aktualizujete, pro
binární soubory z různých úložišť se neprovádí žádné ověření.

Příklad použití:

yt-dlp --update-to nightlyzměnit nightlykanál a
aktualizovat na jeho nejnovější verzi
yt-dlp --update-to stable@2023.02.17upgrade/downgrade
pro vydání na stableznačku kanálu2023.02.17
yt-dlp --update-to 2023.01.06upgrade/downgrade na tag,
2023.01.06pokud na aktuálním kanálu existuje
yt-dlp --update-to example/yt-

dlp@2023.03.01upgrade/downgrade na vydání z example/yt-
dlpúložiště, tag2023.03.01

UVOLNĚNÍ SOUBORŮ

Doporučeno

Soubor Popis

yt-dlp Binární soubor zipimport nezávislý na platformě . Vyžaduje Python
(doporučeno pro Linux/BSD)

yt-dlp.exe Windows (Win7 SP1+) samostatný binární x64 (doporučeno pro
Windows)

yt-
dlp_macos

Universal MacOS (10.15+) samostatný spustitelný soubor (doporučeno
pro MacOS)

Alternativy

Soubor Popis

yt-dlp_x86.exe Windows (Vista SP2+) samostatný x86 (32bitový) binární soubor

yt-dlp_min.exe Windows (Win7 SP1+) samostatný binární x64 postavený s
py2exe

 (nedoporučuje se)

yt-dlp_linux Samostatný Linux x64 binární

https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp
https://docs.python.org/3/library/zipimport.html
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp.exe
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_macos
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_x86.exe
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_min.exe
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_linux

11/102

Soubor Popis

yt-dlp_linux.zip Rozbalený spustitelný soubor Linux (bez automatické aktualizace)

yt-
dlp_linux_armv7l

Samostatný Linux armv7l (32bitový) binární

yt-
dlp_linux_aarch64

Samostatný Linux aarch64 (64bitový) binární

yt-dlp_win.zip Rozbalený spustitelný soubor Windows (bez automatické
aktualizace)

yt-dlp_macos.zip Rozbalený spustitelný soubor MacOS (10.15+) (bez automatické
aktualizace)

yt-
dlp_macos_legacy

MacOS (10.9+) samostatný spustitelný x64

Různé

Soubor Popis

yt-dlp.tar.gz Zdrojový tarball

SHA2-512SUMS Součty SHA512 ve stylu GNU

SHA2-512SUMS.sig Soubor podpisu GPG pro částky SHA512

SHA2-256SUMS GNU-style SHA256 sums

SHA2-256SUMS.sig GPG signature file for SHA256 sums

The public key that can be used to verify the GPG signatures is
available here Example usage:

Note: The manpages, shell completion (autocomplete) files etc. are
available inside the source tarball

DEPENDENCIES

Python versions 3.7+ (CPython and PyPy) are supported. Other
versions and implementations may or may not work correctly.

curl -L https://github.com/yt-dlp/yt-dlp/raw/master/public.key
| gpg --import
gpg --verify SHA2-256SUMS.sig SHA2-256SUMS
gpg --verify SHA2-512SUMS.sig SHA2-512SUMS

https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_linux.zip
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_linux_armv7l
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_linux_aarch64
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_win.zip
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_macos.zip
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp_macos_legacy
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp.tar.gz
https://github.com/yt-dlp/yt-dlp/releases/latest/download/SHA2-512SUMS
https://github.com/yt-dlp/yt-dlp/releases/latest/download/SHA2-512SUMS.sig
https://github.com/yt-dlp/yt-dlp/releases/latest/download/SHA2-256SUMS
https://github.com/yt-dlp/yt-dlp/releases/latest/download/SHA2-256SUMS.sig
https://github.com/yt-dlp/yt-dlp/blob/master/public.key
https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp.tar.gz

12/102

While all the other dependencies are optional, ffmpeg and ffprobe
are highly recommended

Strongly recommended

ffmpeg and ffprobe - Required for merging separate video and
audio files as well as for various post-processing tasks. License
depends on the build

There are bugs in ffmpeg that causes various issues when used
alongside yt-dlp. Since ffmpeg is such an important dependency,
we provide custom builds with patches for some of these issues
at yt-dlp/FFmpeg-Builds. See the readme for details on the
specific issues solved by these builds

Important: What you need is ffmpeg binary, NOT the python
package of the same name

Networking

certifi* - Provides Mozilla's root certificate bundle. Licensed
under MPLv2
brotli* or brotlicffi - Brotli content encoding support. Both
licensed under MIT
websockets* - For downloading over websocket. Licensed
under BSD-3-Clause

Metadata

mutagen* - For --embed-thumbnail in certain formats.
Licensed under GPLv2+
AtomicParsley - For --embed-thumbnail in mp4/m4a files when
mutagen/ffmpeg cannot. Licensed under GPLv2+
xattr, pyxattr or setfattr - For writing xattr metadata (--xattr)
on Linux. Licensed under MIT, LGPL2.1 and GPLv2+
respectively

Misc

1 2

https://www.ffmpeg.org/
https://www.ffmpeg.org/legal.html
https://github.com/yt-dlp/FFmpeg-Builds#ffmpeg-static-auto-builds
https://github.com/yt-dlp/FFmpeg-Builds
https://github.com/yt-dlp/FFmpeg-Builds#patches-applied
https://pypi.org/project/ffmpeg
https://github.com/certifi/python-certifi
https://github.com/certifi/python-certifi/blob/master/LICENSE
https://github.com/google/brotli
https://github.com/python-hyper/brotlicffi
https://en.wikipedia.org/wiki/Brotli
https://github.com/aaugustin/websockets
https://github.com/aaugustin/websockets/blob/main/LICENSE
https://github.com/quodlibet/mutagen
https://github.com/quodlibet/mutagen/blob/master/COPYING
https://github.com/wez/atomicparsley
https://github.com/wez/atomicparsley/blob/master/COPYING
https://github.com/xattr/xattr
https://github.com/iustin/pyxattr
http://savannah.nongnu.org/projects/attr
https://github.com/xattr/xattr/blob/master/LICENSE.txt
https://github.com/iustin/pyxattr/blob/master/COPYING
http://git.savannah.nongnu.org/cgit/attr.git/tree/doc/COPYING
https://github.com/google/brotli/blob/master/LICENSE
https://github.com/python-hyper/brotlicffi/blob/master/LICENSE

13/102

pycryptodomex* - For decrypting AES-128 HLS streams and
various other data. Licensed under BSD-2-Clause
phantomjs - Used in extractors where javascript needs to be
run. Licensed under BSD-3-Clause
secretstorage - For --cookies-from-browser to access the
Gnome keyring while decrypting cookies of Chromium-based
browsers on Linux. Licensed under BSD-3-Clause
Any external downloader that you want to use with --
downloader

Deprecated

avconv and avprobe - Now deprecated alternative to ffmpeg.
License depends on the build
sponskrub - For using the now deprecated sponskrub options.
Licensed under GPLv3+
rtmpdump - For downloading rtmp streams. ffmpeg can be
used instead with --downloader ffmpeg. Licensed under
GPLv2+
mplayer or mpv - For downloading rstp/mms streams. ffmpeg
can be used instead with --downloader ffmpeg. Licensed
under GPLv2+

To use or redistribute the dependencies, you must agree to their
respective licensing terms.

The standalone release binaries are built with the Python interpreter
and the packages marked with * included.

If you do not have the necessary dependencies for a task you are
attempting, yt-dlp will warn you. All the currently available
dependencies are visible at the top of the --verbose output

COMPILE

Standalone PyInstaller Builds

https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome/blob/master/LICENSE.rst
https://github.com/ariya/phantomjs
https://github.com/ariya/phantomjs/blob/master/LICENSE.BSD
https://github.com/mitya57/secretstorage
https://github.com/mitya57/secretstorage/blob/master/LICENSE
https://www.libav.org/
https://libav.org/legal
https://github.com/faissaloo/SponSkrub
https://github.com/faissaloo/SponSkrub/blob/master/LICENCE.md
http://rtmpdump.mplayerhq.hu/
http://rtmpdump.mplayerhq.hu/
http://mplayerhq.hu/design7/info.html
https://mpv.io/
https://github.com/mpv-player/mpv/blob/master/Copyright

14/102

To build the standalone executable, you must have Python and
pyinstaller (plus any of yt-dlp's optional dependencies if needed).
Once you have all the necessary dependencies installed, simply run
pyinst.py. The executable will be built for the same architecture
(x86/ARM, 32/64 bit) as the Python used.

On some systems, you may need to use py or python instead of
python3.

pyinst.py accepts any arguments that can be passed to
pyinstaller, such as --onefile/-F or --onedir/-D, which is
further documented here.

Note: Pyinstaller versions below 4.4 do not support Python installed
from the Windows store without using a virtual environment.

Important: Running pyinstaller directly without using pyinst.py
is not officially supported. This may or may not work correctly.

Platform-independent Binary (UNIX)

You will need the build tools python (3.7+), zip, make (GNU),
pandoc* and pytest*.

After installing these, simply run make.

You can also run make yt-dlp instead to compile only the binary
without updating any of the additional files. (The build tools marked
with * are not needed for this)

Standalone Py2Exe Builds (Windows)

While we provide the option to build with py2exe, it is recommended
to build using PyInstaller instead since the py2exe builds cannot
contain pycryptodomex/certifi and needs VC++14 on the target

python3 -m pip install -U pyinstaller -r requirements.txt

python3 devscripts/make_lazy_extractors.py
python3 pyinst.py

https://pyinstaller.org/en/stable/usage.html#what-to-generate
https://github.com/pyinstaller/pyinstaller#requirements-and-tested-platforms
https://www.py2exe.org/

15/102

computer to run.

If you wish to build it anyway, install Python and py2exe, and then
simply run setup.py py2exe

Related scripts

devscripts/update-version.py - Update the version number
based on current date.
devscripts/set-variant.py - Set the build variant of the
executable.
devscripts/make_changelog.py - Create a markdown
changelog using short commit messages and update
CONTRIBUTORS file.
devscripts/make_lazy_extractors.py - Create lazy
extractors. Running this before building the binaries (any variant)
will improve their startup performance. Set the environment
variable YTDLP_NO_LAZY_EXTRACTORS=1 if you wish to forcefully
disable lazy extractor loading.

Note: See their --help for more info.

Forking the project

If you fork the project on GitHub, you can run your fork's build
workflow to automatically build the selected version(s) as artifacts.
Alternatively, you can run the release workflow or enable the nightly
workflow to create full (pre-)releases.

USAGE AND OPTIONS

Ctrl+F is your friend :D

py -m pip install -U py2exe -r requirements.txt
py devscripts/make_lazy_extractors.py
py setup.py py2exe

yt-dlp [OPTIONS] [--] URL [URL...]

https://github.com/yt-dlp/yt-dlp/blob/master/.github/workflows/build.yml
https://github.com/yt-dlp/yt-dlp/blob/master/.github/workflows/release.yml
https://github.com/yt-dlp/yt-dlp/blob/master/.github/workflows/release-nightly.yml

16/102

General Options:

17/102

-h, --help Print this help text and exit
--version Print program version and exit

-U, --update Update this program to the
latest version
--no-update Do not check for updates
(default)

--update-to [CHANNEL]@[TAG] Upgrade/downgrade to a specific
version.
 CHANNEL can be a repository as
well. CHANNEL

 and TAG default to "stable" and
"latest"
 respectively if omitted; See
"UPDATE" for

 details. Supported channels:
stable, nightly
-i, --ignore-errors Ignore download and

postprocessing errors.
 The download will be considered
successful
 even if the postprocessing

fails
--no-abort-on-error Continue with next video on
download errors;
 e.g. to skip unavailable videos

in a
 playlist (default)
--abort-on-error Abort downloading of further
videos if an

 error occurs (Alias: --no-
ignore-errors)
--dump-user-agent Display the current user-agent

and exit
--list-extractors List all supported extractors
and exit
--extractor-descriptions Output descriptions of all

supported
 extractors and exit
--use-extractors NAMES Extractor names to use
separated by commas.

 You can also use regexes,
"all", "default"
 and "end" (end URL matching);

18/102

e.g. --ies
 "holodex.*,end,youtube". Prefix

the name
 with a "-" to exclude it, e.g.
--ies
 default,-generic. Use --list-

extractors for
 a list of extractor names.
(Alias: --ies)
--default-search PREFIX Use this prefix for unqualified

URLs. E.g.
 "gvsearch2:python" downloads
two videos from
 google videos for the search

term "python".
 Use the value "auto" to let yt-
dlp guess

 ("auto_warning" to emit a
warning when
 guessing). "error" just throws
an error. The

 default value "fixup_error"
repairs broken
 URLs, but emits an error if
this is not

 possible instead of searching
--ignore-config Don't load any more
configuration files
 except those given by --config-

locations.
 For backward compatibility, if
this option

 is found inside the system
configuration
 file, the user configuration is
not loaded.

 (Alias: --no-config)
--no-config-locations Do not load any custom
configuration files
 (default). When given inside a

configuration
 file, ignore all previous --
config-locations

19/102

 defined in the current file
--config-locations PATH Location of the main

configuration file;
 either the path to the config
or its
 containing directory ("-" for

stdin). Can be
 used multiple times and inside
other
 configuration files

--flat-playlist Do not extract the videos of a
playlist,
 only list them
--no-flat-playlist Fully extract the videos of a

playlist
 (default)
--live-from-start Download livestreams from the

start.
 Currently only supported for
YouTube
 (Experimental)

--no-live-from-start Download livestreams from the
current time
 (default)
--wait-for-video MIN[-MAX] Wait for scheduled streams to

become
 available. Pass the minimum
number of
 seconds (or range) to wait

between retries
--no-wait-for-video Do not wait for scheduled
streams (default)

--mark-watched Mark videos watched (even with
--simulate)
--no-mark-watched Do not mark videos watched
(default)

--color [STREAM:]POLICY Whether to emit color codes in
output,
 optionally prefixed by the
STREAM (stdout or

 stderr) to apply the setting
to. Can be one
 of "always", "auto" (default),

20/102

"never", or
 "no_color" (use non color

terminal
 sequences). Can be used
multiple times
--compat-options OPTS Options that can help keep

compatibility
 with youtube-dl or youtube-dlc
 configurations by reverting
some of the

 changes made in yt-dlp. See
"Differences in
 default behavior" for details
--alias ALIASES OPTIONS Create aliases for an option

string. Unless
 an alias starts with a dash "-
", it is

 prefixed with "--". Arguments
are parsed
 according to the Python string
formatting

 mini-language. E.g. --alias
get-audio,-X
 "-S=aext:{0},abr -x --audio-
format {0}"

 creates options "--get-audio"
and "-X" that
 takes an argument (ARG0) and
expands to

 "-S=aext:ARG0,abr -x --audio-
format ARG0".
 All defined aliases are listed

in the --help
 output. Alias options can
trigger more
 aliases; so be careful to avoid

defining
 recursive options. As a safety
measure, each
 alias may be triggered a

maximum of 100
 times. This option can be used
multiple times

21/102

Network Options:

Geo-restriction:

--proxy URL Use the specified
HTTP/HTTPS/SOCKS proxy. To
 enable SOCKS proxy, specify a

proper scheme,
 e.g.
socks5://user:pass@127.0.0.1:1080/.

 Pass in an empty string (--
proxy "") for
 direct connection
--socket-timeout SECONDS Time to wait before giving up,

in seconds
--source-address IP Client-side IP address to bind
to
-4, --force-ipv4 Make all connections via IPv4

-6, --force-ipv6 Make all connections via IPv6
--enable-file-urls Enable file:// URLs. This is
disabled by
 default for security reasons.

22/102

Video Selection:

--geo-verification-proxy URL Use this proxy to verify the IP
address for

 some geo-restricted sites. The
default proxy
 specified by --proxy (or none,
if the option

 is not present) is used for the
actual
 downloading
--xff VALUE How to fake X-Forwarded-For

HTTP header to
 try bypassing geographic
restriction. One of
 "default" (only when known to

be useful),
 "never", an IP block in CIDR
notation, or a

 two-letter ISO 3166-2 country
code

23/102

-I, --playlist-items ITEM_SPEC Comma separated playlist_index
of the items

 to download. You can specify a
range using
 "[START]:[STOP][:STEP]". For
backward

 compatibility, START-STOP is
also supported.
 Use negative indices to count
from the right

 and negative STEP to download
in reverse
 order. E.g. "-I 1:3,7,-5::2"
used on a

 playlist of size 15 will
download the items
 at index 1,2,3,7,11,13,15

--min-filesize SIZE Abort download if filesize is
smaller than
 SIZE, e.g. 50k or 44.6M
--max-filesize SIZE Abort download if filesize is

larger than
 SIZE, e.g. 50k or 44.6M
--date DATE Download only videos uploaded
on this date.

 The date can be "YYYYMMDD" or
in the format
 [now|today|yesterday][-
N[day|week|month|year]].

 E.g. "--date today-2weeks"
downloads only
 videos uploaded on the same day

two weeks ago
--datebefore DATE Download only videos uploaded
on or before
 this date. The date formats

accepted is the
 same as --date
--dateafter DATE Download only videos uploaded
on or after

 this date. The date formats
accepted is the
 same as --date

24/102

--match-filters FILTER Generic video filter. Any
"OUTPUT TEMPLATE"

 field can be compared with a
number or a
 string using the operators
defined in

 "Filtering Formats". You can
also simply
 specify a field to match if the
field is

 present, use "!field" to check
if the field
 is not present, and "&" to
check multiple

 conditions. Use a "\" to escape
"&" or
 quotes if needed. If used

multiple times,
 the filter matches if atleast
one of the
 conditions are met. E.g. --

match-filter
 !is_live --match-filter
"like_count>?100 &
 description~='(?i)\bcats \&

dogs\b'" matches
 only videos that are not live
OR those that
 have a like count more than 100

(or the like
 field is not available) and
also has a

 description that contains the
phrase "cats &
 dogs" (caseless). Use "--match-
filter -" to

 interactively ask whether to
download each
 video
--no-match-filters Do not use any --match-filter

(default)
--break-match-filters FILTER Same as "--match-filters" but
stops the

25/102

Download Options:

 download process when a video
is rejected

--no-break-match-filters Do not use any --break-match-
filters (default)
--no-playlist Download only the video, if the
URL refers

 to a video and a playlist
--yes-playlist Download the playlist, if the
URL refers to
 a video and a playlist

--age-limit YEARS Download only videos suitable
for the given
 age
--download-archive FILE Download only videos not listed

in the
 archive file. Record the IDs of
all

 downloaded videos in it
--no-download-archive Do not use archive file
(default)
--max-downloads NUMBER Abort after downloading NUMBER

files
--break-on-existing Stop the download process when
encountering
 a file that is in the archive

--break-per-input Alters --max-downloads, --
break-on-existing,
 --break-match-filter, and
autonumber to

 reset per input URL
--no-break-per-input --break-on-existing and similar
options

 terminates the entire download
queue
--skip-playlist-after-errors N Number of allowed failures
until the rest of

 the playlist is skipped

26/102

-N, --concurrent-fragments N Number of fragments of a
dash/hlsnative

 video that should be downloaded
concurrently
 (default is 1)
-r, --limit-rate RATE Maximum download rate in bytes

per second,
 e.g. 50K or 4.2M
--throttled-rate RATE Minimum download rate in bytes
per second

 below which throttling is
assumed and the
 video data is re-extracted,
e.g. 100K

-R, --retries RETRIES Number of retries (default is
10), or
 "infinite"

--file-access-retries RETRIES Number of times to retry on
file access
 error (default is 3), or
"infinite"

--fragment-retries RETRIES Number of retries for a
fragment (default is
 10), or "infinite" (DASH,
hlsnative and ISM)

--retry-sleep [TYPE:]EXPR Time to sleep between retries
in seconds
 (optionally) prefixed by the
type of retry

 (http (default), fragment,
file_access,
 extractor) to apply the sleep

to. EXPR can
 be a number,
linear=START[:END[:STEP=1]] or
 exp=START[:END[:BASE=2]]. This

option can be
 used multiple times to set the
sleep for the
 different retry types, e.g. --

retry-sleep
 linear=1::2 --retry-sleep
fragment:exp=1:20

27/102

--skip-unavailable-fragments Skip unavailable fragments for
DASH,

 hlsnative and ISM downloads
(default)
 (Alias: --no-abort-on-
unavailable-fragments)

--abort-on-unavailable-fragments
 Abort download if a fragment is
unavailable
 (Alias: --no-skip-unavailable-

fragments)
--keep-fragments Keep downloaded fragments on
disk after
 downloading is finished

--no-keep-fragments Delete downloaded fragments
after
 downloading is finished

(default)
--buffer-size SIZE Size of download buffer, e.g.
1024 or 16K
 (default is 1024)

--resize-buffer The buffer size is
automatically resized
 from an initial value of --
buffer-size

 (default)
--no-resize-buffer Do not automatically adjust the
buffer size
--http-chunk-size SIZE Size of a chunk for chunk-based

HTTP
 downloading, e.g. 10485760 or
10M (default

 is disabled). May be useful for
bypassing
 bandwidth throttling imposed by
a webserver

 (experimental)
--playlist-random Download playlist videos in
random order
--lazy-playlist Process entries in the playlist

as they are
 received. This disables
n_entries,

28/102

 --playlist-random and --
playlist-reverse

--no-lazy-playlist Process videos in the playlist
only after
 the entire playlist is parsed
(default)

--xattr-set-filesize Set file xattribute
ytdl.filesize with
 expected file size
--hls-use-mpegts Use the mpegts container for

HLS videos;
 allowing some players to play
the video
 while downloading, and reducing

the chance
 of file corruption if download
is

 interrupted. This is enabled by
default for
 live streams
--no-hls-use-mpegts Do not use the mpegts container

for HLS
 videos. This is default when
not downloading
 live streams

--download-sections REGEX Download only chapters that
match the
 regular expression. A "*"
prefix denotes

 time-range instead of chapter.
Negative
 timestamps are calculated from

the end.
 "*from-url" can be used to
download between
 the "start_time" and "end_time"

extracted
 from the URL. Needs ffmpeg.
This option can
 be used multiple times to

download multiple
 sections, e.g. --download-
sections

29/102

 "*10:15-inf" --download-
sections "intro"

--downloader [PROTO:]NAME Name or path of the external
downloader to
 use (optionally) prefixed by
the protocols

 (http, ftp, m3u8, dash, rstp,
rtmp, mms) to
 use it for. Currently supports
native,

 aria2c, avconv, axel, curl,
ffmpeg, httpie,
 wget. You can use this option
multiple times

 to set different downloaders
for different
 protocols. E.g. --downloader

aria2c
 --downloader "dash,m3u8:native"
will use
 aria2c for http/ftp downloads,

and the
 native downloader for dash/m3u8
downloads
 (Alias: --external-downloader)

--downloader-args NAME:ARGS Give these arguments to the
external
 downloader. Specify the
downloader name and

 the arguments separated by a
colon ":". For
 ffmpeg, arguments can be passed

to different
 positions using the same syntax
as
 --postprocessor-args. You can

use this
 option multiple times to give
different
 arguments to different

downloaders (Alias:
 --external-downloader-args)

30/102

Filesystem Options:

31/102

-a, --batch-file FILE File containing URLs to
download ("-" for

 stdin), one URL per line. Lines
starting
 with "#", ";" or "]" are
considered as

 comments and ignored
--no-batch-file Do not read URLs from batch
file (default)
-P, --paths [TYPES:]PATH The paths where the files

should be
 downloaded. Specify the type of
file and the
 path separated by a colon ":".

All the same
 TYPES as --output are
supported.

 Additionally, you can also
provide "home"
 (default) and "temp" paths. All
intermediary

 files are first downloaded to
the temp path
 and then the final files are
moved over to

 the home path after download is
finished.
 This option is ignored if --
output is an

 absolute path
-o, --output [TYPES:]TEMPLATE Output filename template; see
"OUTPUT

 TEMPLATE" for details
--output-na-placeholder TEXT Placeholder for unavailable
fields in
 "OUTPUT TEMPLATE" (default:

"NA")
--restrict-filenames Restrict filenames to only
ASCII characters,
 and avoid "&" and spaces in

filenames
--no-restrict-filenames Allow Unicode characters, "&"
and spaces in

32/102

 filenames (default)
--windows-filenames Force filenames to be Windows-

compatible
--no-windows-filenames Make filenames Windows-
compatible only if
 using Windows (default)

--trim-filenames LENGTH Limit the filename length
(excluding
 extension) to the specified
number of

 characters
-w, --no-overwrites Do not overwrite any files
--force-overwrites Overwrite all video and
metadata files. This

 option includes --no-continue
--no-force-overwrites Do not overwrite the video, but
overwrite

 related files (default)
-c, --continue Resume partially downloaded
files/fragments
 (default)

--no-continue Do not resume partially
downloaded
 fragments. If the file is not
fragmented,

 restart download of the entire
file
--part Use .part files instead of
writing directly

 into output file (default)
--no-part Do not use .part files - write
directly into

 output file
--mtime Use the Last-modified header to
set the file
 modification time (default)

--no-mtime Do not use the Last-modified
header to set
 the file modification time
--write-description Write video description to a

.description file
--no-write-description Do not write video description
(default)

33/102

--write-info-json Write video metadata to a
.info.json file

 (this may contain personal
information)
--no-write-info-json Do not write video metadata
(default)

--write-playlist-metafiles Write playlist metadata in
addition to the
 video metadata when using --
write-info-json,

 --write-description etc.
(default)
--no-write-playlist-metafiles Do not write playlist metadata
when using

 --write-info-json, --write-
description etc.
--clean-info-json Remove some internal metadata

such as
 filenames from the infojson
(default)
--no-clean-info-json Write all fields to the

infojson
--write-comments Retrieve video comments to be
placed in the
 infojson. The comments are

fetched even
 without this option if the
extraction is
 known to be quick (Alias: --

get-comments)
--no-write-comments Do not retrieve video comments
unless the

 extraction is known to be quick
(Alias:
 --no-get-comments)
--load-info-json FILE JSON file containing the video

information
 (created with the "--write-
info-json" option)
--cookies FILE Netscape formatted file to read

cookies from
 and dump cookie jar in
--no-cookies Do not read/dump cookies

34/102

from/to file
 (default)

--cookies-from-browser BROWSER[+KEYRING][:PROFILE][::CONTAINER]
 The name of the browser to load
cookies
 from. Currently supported

browsers are:
 brave, chrome, chromium, edge,
firefox,
 opera, safari, vivaldi.

Optionally, the
 KEYRING used for decrypting
Chromium cookies
 on Linux, the name/path of the

PROFILE to
 load cookies from, and the
CONTAINER name

 (if Firefox) ("none" for no
container) can
 be given with their respective
seperators.

 By default, all containers of
the most
 recently accessed profile are
used.

 Currently supported keyrings
are: basictext,
 gnomekeyring, kwallet,
kwallet5, kwallet6

--no-cookies-from-browser Do not load cookies from
browser (default)
--cache-dir DIR Location in the filesystem

where yt-dlp can
 store some downloaded
information (such as
 client ids and signatures)

permanently. By
 default ${XDG_CACHE_HOME}/yt-
dlp
--no-cache-dir Disable filesystem caching

--rm-cache-dir Delete all filesystem cache
files

35/102

Thumbnail Options:

Internet Shortcut Options:

Verbosity and Simulation Options:

--write-thumbnail Write thumbnail image to disk
--no-write-thumbnail Do not write thumbnail image to

disk (default)
--write-all-thumbnails Write all thumbnail image
formats to disk
--list-thumbnails List available thumbnails of

each video.
 Simulate unless --no-simulate
is used

--write-link Write an internet shortcut
file, depending
 on the current platform (.url,

.webloc or
 .desktop). The URL may be
cached by the OS
--write-url-link Write a .url Windows internet

shortcut. The
 OS caches the URL based on the
file path

--write-webloc-link Write a .webloc macOS internet
shortcut
--write-desktop-link Write a .desktop Linux internet
shortcut

36/102

-q, --quiet Activate quiet mode. If used
with --verbose,

 print the log to stderr
--no-quiet Deactivate quiet mode.
(Default)
--no-warnings Ignore warnings

-s, --simulate Do not download the video and
do not write
 anything to disk
--no-simulate Download the video even if

printing/listing
 options are used
--ignore-no-formats-error Ignore "No video formats"
error. Useful for

 extracting metadata even if the
videos are
 not actually available for

download
 (experimental)
--no-ignore-no-formats-error Throw error when no
downloadable video

 formats are found (default)
--skip-download Do not download the video but
write all
 related files (Alias: --no-

download)
-O, --print [WHEN:]TEMPLATE Field name or output template
to print to
 screen, optionally prefixed

with when to
 print it, separated by a ":".
Supported

 values of "WHEN" are the same
as that of
 --use-postprocessor (default:
video).

 Implies --quiet. Implies --
simulate unless
 --no-simulate or later stages
of WHEN are

 used. This option can be used
multiple times
--print-to-file [WHEN:]TEMPLATE FILE

37/102

 Append given template to the
file. The

 values of WHEN and TEMPLATE are
same as that
 of --print. FILE uses the same
syntax as the

 output template. This option
can be used
 multiple times
-j, --dump-json Quiet, but print JSON

information for each
 video. Simulate unless --no-
simulate is
 used. See "OUTPUT TEMPLATE" for

a
 description of available keys
-J, --dump-single-json Quiet, but print JSON

information for each
 url or infojson passed.
Simulate unless
 --no-simulate is used. If the

URL refers to
 a playlist, the whole playlist
information
 is dumped in a single line

--force-write-archive Force download archive entries
to be written
 as far as no errors occur, even
if -s or

 another simulation option is
used (Alias:
 --force-download-archive)

--newline Output progress bar as new
lines
--no-progress Do not print progress bar
--progress Show progress bar, even if in

quiet mode
--console-title Display progress in console
titlebar
--progress-template [TYPES:]TEMPLATE

 Template for progress outputs,
optionally
 prefixed with one of

38/102

Workarounds:

"download:" (default),
 "download-title:" (the console

title),
 "postprocess:", or
"postprocess-title:".
 The video's fields are

accessible under the
 "info" key and the progress
attributes are
 accessible under "progress"

key. E.g.
 --console-title --progress-
template
 "download-title:%(info.id)s-%

(progress.eta)s"
-v, --verbose Print various debugging
information

--dump-pages Print downloaded pages encoded
using base64
 to debug problems (very
verbose)

--write-pages Write downloaded intermediary
pages to files
 in the current directory to
debug problems

--print-traffic Display sent and read HTTP
traffic

39/102

Video Format Options:

--encoding ENCODING Force the specified encoding
(experimental)

--legacy-server-connect Explicitly allow HTTPS
connection to servers
 that do not support RFC 5746
secure

 renegotiation
--no-check-certificates Suppress HTTPS certificate
validation
--prefer-insecure Use an unencrypted connection

to retrieve
 information about the video
(Currently
 supported only for YouTube)

--add-headers FIELD:VALUE Specify a custom HTTP header
and its value,
 separated by a colon ":". You

can use this
 option multiple times
--bidi-workaround Work around terminals that lack
 bidirectional text support.

Requires bidiv
 or fribidi executable in PATH
--sleep-requests SECONDS Number of seconds to sleep
between requests

 during data extraction
--sleep-interval SECONDS Number of seconds to sleep
before each
 download. This is the minimum

time to sleep
 when used along with --max-
sleep-interval

 (Alias: --min-sleep-interval)
--max-sleep-interval SECONDS Maximum number of seconds to
sleep. Can only
 be used along with --min-sleep-

interval
--sleep-subtitles SECONDS Number of seconds to sleep
before each
 subtitle download

40/102

-f, --format FORMAT Video format code, see "FORMAT
SELECTION"

 for more details
-S, --format-sort SORTORDER Sort the formats by the fields
given, see
 "Sorting Formats" for more

details
--format-sort-force Force user specified sort order
to have
 precedence over all fields, see

"Sorting
 Formats" for more details
(Alias: --S-force)
--no-format-sort-force Some fields have precedence

over the user
 specified sort order (default)
--video-multistreams Allow multiple video streams to

be merged
 into a single file
--no-video-multistreams Only one video stream is
downloaded for each

 output file (default)
--audio-multistreams Allow multiple audio streams to
be merged
 into a single file

--no-audio-multistreams Only one audio stream is
downloaded for each
 output file (default)
--prefer-free-formats Prefer video formats with free

containers
 over non-free ones of same
quality. Use with

 "-S ext" to strictly prefer
free containers
 irrespective of quality
--no-prefer-free-formats Don't give any special

preference to free
 containers (default)
--check-formats Make sure formats are selected
only from

 those that are actually
downloadable
--check-all-formats Check all formats for whether

41/102

Subtitle Options:

they are
 actually downloadable

--no-check-formats Do not check that the formats
are actually
 downloadable
-F, --list-formats List available formats of each

video.
 Simulate unless --no-simulate
is used
--merge-output-format FORMAT Containers that may be used

when merging
 formats, separated by "/", e.g.
"mp4/mkv".
 Ignored if no merge is

required. (currently
 supported: avi, flv, mkv, mov,
mp4, webm)

42/102

Authentication Options:

--write-subs Write subtitle file
--no-write-subs Do not write subtitle file

(default)
--write-auto-subs Write automatically generated
subtitle file
 (Alias: --write-automatic-subs)

--no-write-auto-subs Do not write auto-generated
subtitles
 (default) (Alias: --no-write-
automatic-subs)

--list-subs List available subtitles of
each video.
 Simulate unless --no-simulate
is used

--sub-format FORMAT Subtitle format; accepts
formats preference,
 e.g. "srt" or "ass/srt/best"

--sub-langs LANGS Languages of the subtitles to
download (can
 be regex) or "all" separated by
commas, e.g.

 --sub-langs "en.*,ja". You can
prefix the
 language code with a "-" to
exclude it from

 the requested languages, e.g. -
-sub-langs
 all,-live_chat. Use --list-subs
for a list

 of available language tags

43/102

-u, --username USERNAME Login with this account ID
-p, --password PASSWORD Account password. If this

option is left
 out, yt-dlp will ask
interactively
-2, --twofactor TWOFACTOR Two-factor authentication code

-n, --netrc Use .netrc authentication data
--netrc-location PATH Location of .netrc
authentication data;
 either the path or its

containing directory.
 Defaults to ~/.netrc
--netrc-cmd NETRC_CMD Command to execute to get the
credentials

 for an extractor.
--video-password PASSWORD Video password (vimeo, youku)
--ap-mso MSO Adobe Pass multiple-system

operator (TV
 provider) identifier, use --ap-
list-mso for
 a list of available MSOs

--ap-username USERNAME Multiple-system operator
account login
--ap-password PASSWORD Multiple-system operator
account password.

 If this option is left out, yt-
dlp will ask
 interactively
--ap-list-mso List all supported multiple-

system operators
--client-certificate CERTFILE Path to client certificate file
in PEM

 format. May include the private
key
--client-certificate-key KEYFILE
 Path to private key file for

client
 certificate
--client-certificate-password PASSWORD
 Password for client certificate

private key,
 if encrypted. If not provided,
and the key

44/102

Post-Processing Options:

 is encrypted, yt-dlp will ask
interactively

45/102

-x, --extract-audio Convert video files to audio-
only files

 (requires ffmpeg and ffprobe)
--audio-format FORMAT Format to convert the audio to
when -x is
 used. (currently supported:

best (default),
 aac, alac, flac, m4a, mp3,
opus, vorbis,
 wav). You can specify multiple

rules using
 similar syntax as --remux-video
--audio-quality QUALITY Specify ffmpeg audio quality to
use when

 converting the audio with -x.
Insert a value
 between 0 (best) and 10 (worst)

for VBR or a
 specific bitrate like 128K
(default 5)
--remux-video FORMAT Remux the video into another

container if
 necessary (currently supported:
avi, flv,
 gif, mkv, mov, mp4, webm, aac,

aiff, alac,
 flac, m4a, mka, mp3, ogg, opus,
vorbis,
 wav). If target container does

not support
 the video/audio codec, remuxing
will fail.

 You can specify multiple rules;
e.g.
 "aac>m4a/mov>mp4/mkv" will
remux aac to m4a,

 mov to mp4 and anything else to
mkv
--recode-video FORMAT Re-encode the video into
another format if

 necessary. The syntax and
supported formats
 are the same as --remux-video

46/102

--postprocessor-args NAME:ARGS Give these arguments to the
postprocessors.

 Specify the
postprocessor/executable name
 and the arguments separated by
a colon ":"

 to give the argument to the
specified
 postprocessor/executable.
Supported PP are:

 Merger, ModifyChapters,
SplitChapters,
 ExtractAudio, VideoRemuxer,
VideoConvertor,

 Metadata, EmbedSubtitle,
EmbedThumbnail,
 SubtitlesConvertor,

ThumbnailsConvertor,
 FixupStretched, FixupM4a,
FixupM3u8,
 FixupTimestamp and

FixupDuration. The
 supported executables are:
AtomicParsley,
 FFmpeg and FFprobe. You can

also specify
 "PP+EXE:ARGS" to give the
arguments to the
 specified executable only when

being used by
 the specified postprocessor.
Additionally,

 for ffmpeg/ffprobe, "_i"/"_o"
can be
 appended to the prefix
optionally followed

 by a number to pass the
argument before the
 specified input/output file,
e.g. --ppa

 "Merger+ffmpeg_i1:-v quiet".
You can use
 this option multiple times to

47/102

give different
 arguments to different

postprocessors.
 (Alias: --ppa)
-k, --keep-video Keep the intermediate video
file on disk

 after post-processing
--no-keep-video Delete the intermediate video
file after
 post-processing (default)

--post-overwrites Overwrite post-processed files
(default)
--no-post-overwrites Do not overwrite post-processed
files

--embed-subs Embed subtitles in the video
(only for mp4,
 webm and mkv videos)

--no-embed-subs Do not embed subtitles
(default)
--embed-thumbnail Embed thumbnail in the video as
cover art

--no-embed-thumbnail Do not embed thumbnail
(default)
--embed-metadata Embed metadata to the video
file. Also

 embeds chapters/infojson if
present unless
 --no-embed-chapters/--no-embed-
info-json are

 used (Alias: --add-metadata)
--no-embed-metadata Do not add metadata to file
(default)

 (Alias: --no-add-metadata)
--embed-chapters Add chapter markers to the
video file
 (Alias: --add-chapters)

--no-embed-chapters Do not add chapter markers
(default) (Alias:
 --no-add-chapters)
--embed-info-json Embed the infojson as an

attachment to
 mkv/mka video files
--no-embed-info-json Do not embed the infojson as an

48/102

attachment
 to the video file

--parse-metadata [WHEN:]FROM:TO
 Parse additional metadata like
title/artist
 from other fields; see

"MODIFYING METADATA"
 for details. Supported values
of "WHEN" are
 the same as that of --use-

postprocessor
 (default: pre_process)
--replace-in-metadata [WHEN:]FIELDS REGEX REPLACE
 Replace text in a metadata

field using the
 given regex. This option can be
used

 multiple times. Supported
values of "WHEN"
 are the same as that of --use-
postprocessor

 (default: pre_process)
--xattrs Write metadata to the video
file's xattrs
 (using dublin core and xdg

standards)
--concat-playlist POLICY Concatenate videos in a
playlist. One of
 "never", "always", or

"multi_video"
 (default; only when the videos
form a single

 show). All the video files must
have same
 codecs and number of streams to
be

 concatable. The "pl_video:"
prefix can be
 used with "--paths" and "--
output" to set

 the output filename for the
concatenated
 files. See "OUTPUT TEMPLATE"

49/102

for details
--fixup POLICY Automatically correct known

faults of the
 file. One of never (do
nothing), warn (only
 emit a warning), detect_or_warn

(the
 default; fix file if we can,
warn
 otherwise), force (try fixing

even if file
 already exists)
--ffmpeg-location PATH Location of the ffmpeg binary;
either the

 path to the binary or its
containing directory
--exec [WHEN:]CMD Execute a command, optionally

prefixed with
 when to execute it, separated
by a ":".
 Supported values of "WHEN" are

the same as
 that of --use-postprocessor
(default:
 after_move). Same syntax as the

output
 template can be used to pass
any field as
 arguments to the command. If no

fields are
 passed, %(filepath,_filename|)q
is appended

 to the end of the command. This
option can
 be used multiple times
--no-exec Remove any previously defined -

-exec
--convert-subs FORMAT Convert the subtitles to
another format
 (currently supported: ass, lrc,

srt, vtt)
 (Alias: --convert-subtitles)
--convert-thumbnails FORMAT Convert the thumbnails to

50/102

another format
 (currently supported: jpg, png,

webp). You
 can specify multiple rules
using similar
 syntax as --remux-video

--split-chapters Split video into multiple files
based on
 internal chapters. The
"chapter:" prefix can

 be used with "--paths" and "--
output" to set
 the output filename for the
split files. See

 "OUTPUT TEMPLATE" for details
--no-split-chapters Do not split video based on
chapters (default)

--remove-chapters REGEX Remove chapters whose title
matches the
 given regular expression. The
syntax is the

 same as --download-sections.
This option can
 be used multiple times
--no-remove-chapters Do not remove any chapters from

the file
 (default)
--force-keyframes-at-cuts Force keyframes at cuts when
 downloading/splitting/removing

sections.
 This is slow due to needing a
re-encode, but

 the resulting video may have
fewer artifacts
 around the cuts
--no-force-keyframes-at-cuts Do not force keyframes around

the chapters
 when cutting/splitting
(default)
--use-postprocessor NAME[:ARGS]

 The (case sensitive) name of
plugin
 postprocessors to be enabled,

51/102

SponsorBlock Options:

Make chapter entries for, or remove various segments (sponsor,
introductions, etc.) from downloaded YouTube videos using the
SponsorBlock API

and
 (optionally) arguments to be

passed to it,
 separated by a colon ":". ARGS
are a
 semicolon ";" delimited list of

NAME=VALUE.
 The "when" argument determines
when the
 postprocessor is invoked. It

can be one of
 "pre_process" (after video
extraction),
 "after_filter" (after video

passes filter),
 "video" (after --format; before
 --print/--output), "before_dl"

(before each
 video download), "post_process"
(after each
 video download; default),

"after_move"
 (after moving video file to
it's final
 locations), "after_video"

(after downloading
 and processing all formats of a
video), or
 "playlist" (at end of

playlist). This option
 can be used multiple times to
add different

 postprocessors

https://sponsor.ajay.app/

52/102

--sponsorblock-mark CATS SponsorBlock categories to
create chapters

 for, separated by commas.
Available
 categories are sponsor, intro,
outro,

 selfpromo, preview, filler,
interaction,
 music_offtopic, poi_highlight,
chapter, all

 and default (=all). You can
prefix the
 category with a "-" to exclude
it. See [1]

 for description of the
categories. E.g.
 --sponsorblock-mark all,-

preview
 [1]
https://wiki.sponsor.ajay.app/w/Segment_Categories
--sponsorblock-remove CATS SponsorBlock categories to be

removed from
 the video file, separated by
commas. If a
 category is present in both

mark and remove,
 remove takes precedence. The
syntax and
 available categories are the

same as for
 --sponsorblock-mark except that
"default"

 refers to "all,-filler" and
poi_highlight,
 chapter are not available
--sponsorblock-chapter-title TEMPLATE

 An output template for the
title of the
 SponsorBlock chapters created
by

 --sponsorblock-mark. The only
available
 fields are start_time,

53/102

Extractor Options:

end_time, category,
 categories, name,

category_names. Defaults
 to "[SponsorBlock]: %
(category_names)l"
--no-sponsorblock Disable both --sponsorblock-

mark and
 --sponsorblock-remove
--sponsorblock-api URL SponsorBlock API location,
defaults to

 https://sponsor.ajay.app

--extractor-retries RETRIES Number of retries for known

extractor errors
 (default is 3), or "infinite"
--allow-dynamic-mpd Process dynamic DASH manifests
(default)

 (Alias: --no-ignore-dynamic-
mpd)
--ignore-dynamic-mpd Do not process dynamic DASH

manifests
 (Alias: --no-allow-dynamic-mpd)
--hls-split-discontinuity Split HLS playlists to
different formats at

 discontinuities such as ad
breaks
--no-hls-split-discontinuity Do not split HLS playlists to
different

 formats at discontinuities such
as ad breaks
 (default)
--extractor-args IE_KEY:ARGS Pass ARGS arguments to the

IE_KEY extractor.
 See "EXTRACTOR ARGUMENTS" for
details. You

 can use this option multiple
times to give
 arguments for different
extractors

54/102

CONFIGURATION

You can configure yt-dlp by placing any supported command line
option to a configuration file. The configuration is loaded from the
following locations:

1. Main Configuration:

The file given by --config-location
2. Portable Configuration: (Recommended for portable

installations)

If using a binary, yt-dlp.conf in the same directory as the
binary
If running from source-code, yt-dlp.conf in the parent
directory of yt_dlp

3. Home Configuration:

yt-dlp.conf in the home path given by -P
If -P is not given, the current directory is searched

4. User Configuration:

${XDG_CONFIG_HOME}/yt-dlp.conf

${XDG_CONFIG_HOME}/yt-dlp/config (recommended on
Linux/macOS)
${XDG_CONFIG_HOME}/yt-dlp/config.txt

${APPDATA}/yt-dlp.conf

${APPDATA}/yt-dlp/config (recommended on Windows)
${APPDATA}/yt-dlp/config.txt

~/yt-dlp.conf

~/yt-dlp.conf.txt

~/.yt-dlp/config

~/.yt-dlp/config.txt

See also: Notes about environment variables

55/102

5. System Configuration:

/etc/yt-dlp.conf

/etc/yt-dlp/config

/etc/yt-dlp/config.txt

E.g. with the following configuration file yt-dlp will always extract the
audio, not copy the mtime, use a proxy and save all videos under
YouTube directory in your home directory:

Note: Options in configuration file are just the same options aka
switches used in regular command line calls; thus there must be no
whitespace after - or --, e.g. -o or --proxy but not - o or --
proxy. They must also be quoted when necessary as-if it were a
UNIX shell.

You can use --ignore-config if you want to disable all configuration
files for a particular yt-dlp run. If --ignore-config is found inside
any configuration file, no further configuration will be loaded. For
example, having the option in the portable configuration file prevents
loading of home, user, and system configurations. Additionally, (for
backward compatibility) if --ignore-config is found inside the
system configuration file, the user configuration is not loaded.

Lines starting with # are comments

Always extract audio
-x

Do not copy the mtime

--no-mtime

Use this proxy

--proxy 127.0.0.1:3128

Save all videos under YouTube directory in your home
directory

-o ~/YouTube/%(title)s.%(ext)s

56/102

Configuration file encoding

The configuration files are decoded according to the UTF BOM if
present, and in the encoding from system locale otherwise.

If you want your file to be decoded differently, add # coding:
ENCODING to the beginning of the file (e.g. # coding: shift-jis).
There must be no characters before that, even spaces or BOM.

Authentication with netrc

You may also want to configure automatic credentials storage for
extractors that support authentication (by providing login and
password with --username and --password) in order not to pass
credentials as command line arguments on every yt-dlp execution
and prevent tracking plain text passwords in the shell command
history. You can achieve this using a .netrc file on a per-extractor
basis. For that you will need to create a .netrc file in --netrc-
location and restrict permissions to read/write by only you:

After that you can add credentials for an extractor in the following
format, where extractor is the name of the extractor in lowercase:

E.g.

To activate authentication with the .netrc file you should pass --
netrc to yt-dlp or place it in the configuration file.

The default location of the .netrc file is ~ (see below).

touch ${HOME}/.netrc
chmod a-rwx,u+rw ${HOME}/.netrc

machine <extractor> login <username> password <password>

machine youtube login myaccount@gmail.com password
my_youtube_password
machine twitch login my_twitch_account_name password

my_twitch_password

https://stackoverflow.com/tags/.netrc/info

57/102

As an alternative to using the .netrc file, which has the
disadvantage of keeping your passwords in a plain text file, you can
configure a custom shell command to provide the credentials for an
extractor. This is done by providing the --netrc-cmd parameter, it
shall output the credentials in the netrc format and return 0 on
success, other values will be treated as an error. {} in the command
will be replaced by the name of the extractor to make it possible to
select the credentials for the right extractor.

E.g. To use an encrypted .netrc file stored as .authinfo.gpg

Notes about environment variables

Environment variables are normally specified as
${VARIABLE}/$VARIABLE on UNIX and %VARIABLE% on Windows;
but is always shown as ${VARIABLE} in this documentation
yt-dlp also allow using UNIX-style variables on Windows for
path-like options; e.g. --output, --config-location
If unset, ${XDG_CONFIG_HOME} defaults to ~/.config and
${XDG_CACHE_HOME} to ~/.cache
On Windows, ~ points to ${HOME} if present; or, ${USERPROFILE}
or ${HOMEDRIVE}${HOMEPATH} otherwise
On Windows, ${USERPROFILE} generally points to C:\Users\
<user name> and ${APPDATA} to
${USERPROFILE}\AppData\Roaming

OUTPUT TEMPLATE

The -o option is used to indicate a template for the output file names
while -P option is used to specify the path each type of file should be
saved to.

tl;dr: navigate me to examples.

yt-dlp --netrc-cmd 'gpg --decrypt ~/.authinfo.gpg'
https://www.youtube.com/watch?v=BaW_jenozKc

58/102

The simplest usage of -o is not to set any template arguments when
downloading a single file, like in yt-dlp -o funny_video.flv
"https://some/video" (hard-coding file extension like this is not
recommended and could break some post-processing).

It may however also contain special sequences that will be replaced
when downloading each video. The special sequences may be
formatted according to Python string formatting operations, e.g. %
(NAME)s or %(NAME)05d. To clarify, that is a percent symbol followed
by a name in parentheses, followed by formatting operations.

The field names themselves (the part inside the parenthesis) can
also have some special formatting:

1. Object traversal: The dictionaries and lists available in
metadata can be traversed by using a dot . separator; e.g. %
(tags.0)s, %(subtitles.en.-1.ext)s. You can do Python
slicing with colon :; E.g. %(id.3:7:-1)s, %
(formats.:.format_id)s. Curly braces {} can be used to build
dictionaries with only specific keys; e.g. %(formats.:.
{format_id,height})#j. An empty field name %()s refers to
the entire infodict; e.g. %(.{id,title})s. Note that all the fields
that become available using this method are not listed below.
Use -j to see such fields

2. Addition: Addition and subtraction of numeric fields can be
done using + and - respectively. E.g. %
(playlist_index+10)03d, %(n_entries+1-playlist_index)d

3. Date/time Formatting: Date/time fields can be formatted
according to strftime formatting by specifying it separated from
the field name using a >. E.g. %(duration>%H-%M-%S)s, %
(upload_date>%Y-%m-%d)s, %(epoch-3600>%H-%M-%S)s

4. Alternatives: Alternate fields can be specified separated with a
,. E.g. %(release_date>%Y,upload_date>%Y|Unknown)s

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

59/102

5. Replacement: A replacement value can be specified using a &
separator according to the str.format mini-language. If the field
is not empty, this replacement value will be used instead of the
actual field content. This is done after alternate fields are
considered; thus the replacement is used if any of the alternative
fields is not empty. E.g. %(chapters&has chapters|no
chapters)s, %(title&TITLE={:>20}|NO TITLE)s

6. Default: A literal default value can be specified for when the field
is empty using a | separator. This overrides --output-na-
placeholder. E.g. %(uploader|Unknown)s

7. More Conversions: In addition to the normal format types
diouxXeEfFgGcrs, yt-dlp additionally supports converting to B =
Bytes, j = json (flag # for pretty-printing, + for Unicode), h =
HTML escaping, l = a comma separated list (flag # for \n
newline-separated), q = a string quoted for the terminal (flag # to
split a list into different arguments), D = add Decimal suffixes
(e.g. 10M) (flag # to use 1024 as factor), and S = Sanitize as
filename (flag # for restricted)

8. Unicode normalization: The format type U can be used for NFC
Unicode normalization. The alternate form flag (#) changes the
normalization to NFD and the conversion flag + can be used for
NFKC/NFKD compatibility equivalence normalization. E.g. %
(title)+.100U is NFKC

To summarize, the general syntax for a field is:

Additionally, you can set different output templates for the various
metadata files separately from the general output template by
specifying the type of file followed by the template separated by a
colon :. The different file types supported are subtitle, thumbnail,

%(name[.keys][addition][>strf][,alternate][&replacement]
[|default])[flags][width][.precision][length]type

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

60/102

description, annotation (deprecated), infojson, link,
pl_thumbnail, pl_description, pl_infojson, chapter, pl_video.
E.g. -o "%(title)s.%(ext)s" -o "thumbnail:%(title)s\%
(title)s.%(ext)s" will put the thumbnails in a folder with the same
name as the video. If any of the templates is empty, that type of file
will not be written. E.g. --write-thumbnail -o "thumbnail:" will
write thumbnails only for playlists and not for video.

Note: Due to post-processing (i.e. merging etc.), the actual output
filename might differ. Use --print after_move:filepath to get the
name after all post-processing is complete.

The available fields are:

id (string): Video identifier
title (string): Video title
fulltitle (string): Video title ignoring live timestamp and
generic title
ext (string): Video filename extension
alt_title (string): A secondary title of the video
description (string): The description of the video
display_id (string): An alternative identifier for the video
uploader (string): Full name of the video uploader
license (string): License name the video is licensed under
creator (string): The creator of the video
timestamp (numeric): UNIX timestamp of the moment the video
became available
upload_date (string): Video upload date in UTC (YYYYMMDD)
release_timestamp (numeric): UNIX timestamp of the moment
the video was released
release_date (string): The date (YYYYMMDD) when the video
was released in UTC
modified_timestamp (numeric): UNIX timestamp of the moment
the video was last modified

61/102

modified_date (string): The date (YYYYMMDD) when the video
was last modified in UTC
uploader_id (string): Nickname or id of the video uploader
channel (string): Full name of the channel the video is uploaded
on
channel_id (string): Id of the channel
channel_follower_count (numeric): Number of followers of the
channel
channel_is_verified (boolean): Whether the channel is
verified on the platform
location (string): Physical location where the video was filmed
duration (numeric): Length of the video in seconds
duration_string (string): Length of the video (HH:mm:ss)
view_count (numeric): How many users have watched the video
on the platform
concurrent_view_count (numeric): How many users are
currently watching the video on the platform.
like_count (numeric): Number of positive ratings of the video
dislike_count (numeric): Number of negative ratings of the
video
repost_count (numeric): Number of reposts of the video
average_rating (numeric): Average rating give by users, the
scale used depends on the webpage
comment_count (numeric): Number of comments on the video
(For some extractors, comments are only downloaded at the
end, and so this field cannot be used)
age_limit (numeric): Age restriction for the video (years)
live_status (string): One of "not_live", "is_live", "is_upcoming",
"was_live", "post_live" (was live, but VOD is not yet processed)
is_live (boolean): Whether this video is a live stream or a
fixed-length video
was_live (boolean): Whether this video was originally a live
stream

62/102

playable_in_embed (string): Whether this video is allowed to
play in embedded players on other sites
availability (string): Whether the video is "private",
"premium_only", "subscriber_only", "needs_auth", "unlisted" or
"public"
start_time (numeric): Time in seconds where the reproduction
should start, as specified in the URL
end_time (numeric): Time in seconds where the reproduction
should end, as specified in the URL
extractor (string): Name of the extractor
extractor_key (string): Key name of the extractor
epoch (numeric): Unix epoch of when the information extraction
was completed
autonumber (numeric): Number that will be increased with each
download, starting at --autonumber-start, padded with leading
zeros to 5 digits
video_autonumber (numeric): Number that will be increased
with each video
n_entries (numeric): Total number of extracted items in the
playlist
playlist_id (string): Identifier of the playlist that contains the
video
playlist_title (string): Name of the playlist that contains the
video
playlist (string): playlist_id or playlist_title
playlist_count (numeric): Total number of items in the playlist.
May not be known if entire playlist is not extracted
playlist_index (numeric): Index of the video in the playlist
padded with leading zeros according the final index
playlist_autonumber (numeric): Position of the video in the
playlist download queue padded with leading zeros according to
the total length of the playlist
playlist_uploader (string): Full name of the playlist uploader

63/102

playlist_uploader_id (string): Nickname or id of the playlist
uploader
webpage_url (string): A URL to the video webpage which if
given to yt-dlp should allow to get the same result again
webpage_url_basename (string): The basename of the webpage
URL
webpage_url_domain (string): The domain of the webpage URL
original_url (string): The URL given by the user (or same as
webpage_url for playlist entries)

All the fields in Filtering Formats can also be used

Available for the video that belongs to some logical chapter or
section:

chapter (string): Name or title of the chapter the video belongs
to
chapter_number (numeric): Number of the chapter the video
belongs to
chapter_id (string): Id of the chapter the video belongs to

Available for the video that is an episode of some series or
programme:

series (string): Title of the series or programme the video
episode belongs to
season (string): Title of the season the video episode belongs to
season_number (numeric): Number of the season the video
episode belongs to
season_id (string): Id of the season the video episode belongs
to
episode (string): Title of the video episode
episode_number (numeric): Number of the video episode within
a season
episode_id (string): Id of the video episode

64/102

Available for the media that is a track or a part of a music album:

track (string): Title of the track
track_number (numeric): Number of the track within an album or
a disc
track_id (string): Id of the track
artist (string): Artist(s) of the track
genre (string): Genre(s) of the track
album (string): Title of the album the track belongs to
album_type (string): Type of the album
album_artist (string): List of all artists appeared on the album
disc_number (numeric): Number of the disc or other physical
medium the track belongs to
release_year (numeric): Year (YYYY) when the album was
released

Available only when using --download-sections and for chapter:
prefix when using --split-chapters for videos with internal
chapters:

section_title (string): Title of the chapter
section_number (numeric): Number of the chapter within the file
section_start (numeric): Start time of the chapter in seconds
section_end (numeric): End time of the chapter in seconds

Available only when used in --print:

urls (string): The URLs of all requested formats, one in each
line
filename (string): Name of the video file. Note that the actual
filename may differ
formats_table (table): The video format table as printed by --
list-formats

thumbnails_table (table): The thumbnail format table as printed
by --list-thumbnails

65/102

subtitles_table (table): The subtitle format table as printed by
--list-subs

automatic_captions_table (table): The automatic subtitle
format table as printed by --list-subs

Available only after the video is downloaded
(post_process/after_move):

filepath: Actual path of downloaded video file

Available only in --sponsorblock-chapter-title:

start_time (numeric): Start time of the chapter in seconds
end_time (numeric): End time of the chapter in seconds
categories (list): The SponsorBlock categories the chapter
belongs to
category (string): The smallest SponsorBlock category the
chapter belongs to
category_names (list): Friendly names of the categories
name (string): Friendly name of the smallest category
type (string): The SponsorBlock action type of the chapter

Each aforementioned sequence when referenced in an output
template will be replaced by the actual value corresponding to the
sequence name. E.g. for -o %(title)s-%(id)s.%(ext)s and an
mp4 video with title yt-dlp test video and id BaW_jenozKc, this will
result in a yt-dlp test video-BaW_jenozKc.mp4 file created in the
current directory.

Note: Some of the sequences are not guaranteed to be present
since they depend on the metadata obtained by a particular
extractor. Such sequences will be replaced with placeholder value
provided with --output-na-placeholder (NA by default).

Tip: Look at the -j output to identify which fields are available for the
particular URL

https://wiki.sponsor.ajay.app/w/Types#Category
https://wiki.sponsor.ajay.app/w/Types#Action_Type

66/102

For numeric sequences you can use numeric related formatting; e.g.
%(view_count)05d will result in a string with view count padded with
zeros up to 5 characters, like in 00042.

Output templates can also contain arbitrary hierarchical path, e.g. -o
"%(playlist)s/%(playlist_index)s - %(title)s.%(ext)s"

which will result in downloading each video in a directory
corresponding to this path template. Any missing directory will be
automatically created for you.

To use percent literals in an output template use %%. To output to
stdout use -o -.

The current default template is %(title)s [%(id)s].%(ext)s.

In some cases, you don't want special characters such as 中,
spaces, or &, such as when transferring the downloaded filename to
a Windows system or the filename through an 8bit-unsafe channel.
In these cases, add the --restrict-filenames flag to get a shorter
title.

Output template examples

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting

67/102

$ yt-dlp --print filename -o "test video.%(ext)s" BaW_jenozKc
test video.webm # Literal name with correct extension

$ yt-dlp --print filename -o "%(title)s.%(ext)s" BaW_jenozKc
youtube-dl test video ''_ä↭𝕐.webm # All kinds of weird
characters

$ yt-dlp --print filename -o "%(title)s.%(ext)s" BaW_jenozKc --
restrict-filenames
youtube-dl_test_video_.webm # Restricted file name

Download YouTube playlist videos in separate directory
indexed by video order in a playlist
$ yt-dlp -o "%(playlist)s/%(playlist_index)s - %(title)s.%

(ext)s" "https://www.youtube.com/playlist?
list=PLwiyx1dc3P2JR9N8gQaQN_BCvlSlap7re"

Download YouTube playlist videos in separate directories
according to their uploaded year
$ yt-dlp -o "%(upload_date>%Y)s/%(title)s.%(ext)s"
"https://www.youtube.com/playlist?

list=PLwiyx1dc3P2JR9N8gQaQN_BCvlSlap7re"

Prefix playlist index with " - " separator, but only if it is
available

$ yt-dlp -o "%(playlist_index&{} - |)s%(title)s.%(ext)s"
BaW_jenozKc
"https://www.youtube.com/user/TheLinuxFoundation/playlists"

Download all playlists of YouTube channel/user keeping each
playlist in separate directory:
$ yt-dlp -o "%(uploader)s/%(playlist)s/%(playlist_index)s - %

(title)s.%(ext)s"
"https://www.youtube.com/user/TheLinuxFoundation/playlists"

Download Udemy course keeping each chapter in separate

directory under MyVideos directory in your home
$ yt-dlp -u user -p password -P "~/MyVideos" -o "%(playlist)s/%
(chapter_number)s - %(chapter)s/%(title)s.%(ext)s"
"https://www.udemy.com/java-tutorial"

Download entire series season keeping each series and each
season in separate directory under C:/MyVideos

68/102

FORMAT SELECTION

By default, yt-dlp tries to download the best available quality if you
don't pass any options. This is generally equivalent to using -f
bestvideo*+bestaudio/best. However, if multiple audiostreams is
enabled (--audio-multistreams), the default format changes to -f
bestvideo+bestaudio/best. Similarly, if ffmpeg is unavailable, or if
you use yt-dlp to stream to stdout (-o -), the default becomes -f
best/bestvideo+bestaudio.

Deprecation warning: Latest versions of yt-dlp can stream multiple
formats to the stdout simultaneously using ffmpeg. So, in future
versions, the default for this will be set to -f bv*+ba/b similar to
normal downloads. If you want to preserve the -f b/bv+ba setting, it
is recommended to explicitly specify it in the configuration options.

The general syntax for format selection is -f FORMAT (or --format
FORMAT) where FORMAT is a selector expression, i.e. an expression
that describes format or formats you would like to download.

$ yt-dlp -P "C:/MyVideos" -o "%(series)s/%(season_number)s - %
(season)s/%(episode_number)s - %(episode)s.%(ext)s"

"https://videomore.ru/kino_v_detalayah/5_sezon/367617"

Download video as "C:\MyVideos\uploader\title.ext", subtitles
as "C:\MyVideos\subs\uploader\title.ext"

and put all temporary files in "C:\MyVideos\tmp"
$ yt-dlp -P "C:/MyVideos" -P "temp:tmp" -P "subtitle:subs" -o
"%(uploader)s/%(title)s.%(ext)s" BaW_jenoz --write-subs

Download video as "C:\MyVideos\uploader\title.ext" and
subtitles as "C:\MyVideos\uploader\subs\title.ext"
$ yt-dlp -P "C:/MyVideos" -o "%(uploader)s/%(title)s.%(ext)s" -
o "subtitle:%(uploader)s/subs/%(title)s.%(ext)s" BaW_jenozKc --

write-subs

Stream the video being downloaded to stdout

$ yt-dlp -o - BaW_jenozKc

69/102

tl;dr: navigate me to examples.

The simplest case is requesting a specific format; e.g. with -f 22
you can download the format with format code equal to 22. You can
get the list of available format codes for particular video using --
list-formats or -F. Note that these format codes are extractor
specific.

You can also use a file extension (currently 3gp, aac, flv, m4a, mp3,
mp4, ogg, wav, webm are supported) to download the best quality
format of a particular file extension served as a single file, e.g. -f
webm will download the best quality format with the webm extension
served as a single file.

You can use -f - to interactively provide the format selector for each
video

You can also use special names to select particular edge case
formats:

all: Select all formats separately
mergeall: Select and merge all formats (Must be used with --
audio-multistreams, --video-multistreams or both)
b*, best*: Select the best quality format that contains either a
video or an audio or both (ie; vcodec!=none or acodec!=none)
b, best: Select the best quality format that contains both video
and audio. Equivalent to best*[vcodec!=none][acodec!=none]
bv, bestvideo: Select the best quality video-only format.
Equivalent to best*[acodec=none]
bv*, bestvideo*: Select the best quality format that contains
video. It may also contain audio. Equivalent to best*
[vcodec!=none]

ba, bestaudio: Select the best quality audio-only format.
Equivalent to best*[vcodec=none]

70/102

ba*, bestaudio*: Select the best quality format that contains
audio. It may also contain video. Equivalent to best*
[acodec!=none] (Do not use!)
w*, worst*: Select the worst quality format that contains either a
video or an audio
w, worst: Select the worst quality format that contains both video
and audio. Equivalent to worst*[vcodec!=none]
[acodec!=none]

wv, worstvideo: Select the worst quality video-only format.
Equivalent to worst*[acodec=none]
wv*, worstvideo*: Select the worst quality format that contains
video. It may also contain audio. Equivalent to worst*
[vcodec!=none]

wa, worstaudio: Select the worst quality audio-only format.
Equivalent to worst*[vcodec=none]
wa*, worstaudio*: Select the worst quality format that contains
audio. It may also contain video. Equivalent to worst*
[acodec!=none]

For example, to download the worst quality video-only format you
can use -f worstvideo. It is however recommended not to use
worst and related options. When your format selector is worst, the
format which is worst in all respects is selected. Most of the time,
what you actually want is the video with the smallest filesize instead.
So it is generally better to use -S +size or more rigorously, -S
+size,+br,+res,+fps instead of -f worst. See Sorting Formats for
more details.

You can select the n'th best format of a type by using best<type>.
<n>. For example, best.2 will select the 2nd best combined format.
Similarly, bv*.3 will select the 3rd best format that contains a video
stream.

https://github.com/yt-dlp/yt-dlp/issues/979#issuecomment-919629354

71/102

If you want to download multiple videos, and they don't have the
same formats available, you can specify the order of preference
using slashes. Note that formats on the left hand side are preferred;
e.g. -f 22/17/18 will download format 22 if it's available, otherwise it
will download format 17 if it's available, otherwise it will download
format 18 if it's available, otherwise it will complain that no suitable
formats are available for download.

If you want to download several formats of the same video use a
comma as a separator, e.g. -f 22,17,18 will download all these
three formats, of course if they are available. Or a more
sophisticated example combined with the precedence feature: -f
136/137/mp4/bestvideo,140/m4a/bestaudio.

You can merge the video and audio of multiple formats into a single
file using -f <format1>+<format2>+... (requires ffmpeg installed);
e.g. -f bestvideo+bestaudio will download the best video-only
format, the best audio-only format and mux them together with
ffmpeg.

Deprecation warning: Since the below described behavior is
complex and counter-intuitive, this will be removed and multistreams
will be enabled by default in the future. A new operator will be
instead added to limit formats to single audio/video

Unless --video-multistreams is used, all formats with a video
stream except the first one are ignored. Similarly, unless --audio-
multistreams is used, all formats with an audio stream except the
first one are ignored. E.g. -f bestvideo+best+bestaudio --video-
multistreams --audio-multistreams will download and merge all
3 given formats. The resulting file will have 2 video streams and 2
audio streams. But -f bestvideo+best+bestaudio --no-video-
multistreams will download and merge only bestvideo and
bestaudio. best is ignored since another format containing a video
stream (bestvideo) has already been selected. The order of the

72/102

formats is therefore important. -f best+bestaudio --no-audio-
multistreams will download only best while -f bestaudio+best --
no-audio-multistreams will ignore best and download only
bestaudio.

Filtering Formats

You can also filter the video formats by putting a condition in
brackets, as in -f "best[height=720]" (or -f "[filesize>10M]"
since filters without a selector are interpreted as best).

The following numeric meta fields can be used with comparisons <,
<=, >, >=, = (equals), != (not equals):

filesize: The number of bytes, if known in advance
filesize_approx: An estimate for the number of bytes
width: Width of the video, if known
height: Height of the video, if known
aspect_ratio: Aspect ratio of the video, if known
tbr: Average bitrate of audio and video in KBit/s
abr: Average audio bitrate in KBit/s
vbr: Average video bitrate in KBit/s
asr: Audio sampling rate in Hertz
fps: Frame rate
audio_channels: The number of audio channels
stretched_ratio: width:height of the video's pixels, if not
square

Also filtering work for comparisons = (equals), ^= (starts with), $=
(ends with), *= (contains), ~= (matches regex) and following string
meta fields:

url: Video URL
ext: File extension
acodec: Name of the audio codec in use
vcodec: Name of the video codec in use

73/102

container: Name of the container format
protocol: The protocol that will be used for the actual
download, lower-case (http, https, rtsp, rtmp, rtmpe, mms, f4m,
ism, http_dash_segments, m3u8, or m3u8_native)
language: Language code
dynamic_range: The dynamic range of the video
format_id: A short description of the format
format: A human-readable description of the format
format_note: Additional info about the format
resolution: Textual description of width and height

Any string comparison may be prefixed with negation ! in order to
produce an opposite comparison, e.g. !*= (does not contain). The
comparand of a string comparison needs to be quoted with either
double or single quotes if it contains spaces or special characters
other than ._-.

Note: None of the aforementioned meta fields are guaranteed to be
present since this solely depends on the metadata obtained by
particular extractor, i.e. the metadata offered by the website. Any
other field made available by the extractor can also be used for
filtering.

Formats for which the value is not known are excluded unless you
put a question mark (?) after the operator. You can combine format
filters, so -f "bv[height<=?720][tbr>500]" selects up to 720p
videos (or videos where the height is not known) with a bitrate of at
least 500 KBit/s. You can also use the filters with all to download all
formats that satisfy the filter, e.g. -f "all[vcodec=none]" selects all
audio-only formats.

Format selectors can also be grouped using parentheses; e.g. -f "
(mp4,webm)[height<480]" will download the best pre-merged mp4
and webm formats with a height lower than 480.

Sorting Formats

74/102

You can change the criteria for being considered the best by using -
S (--format-sort). The general format for this is --format-sort
field1,field2....

The available fields are:

hasvid: Gives priority to formats that have a video stream
hasaud: Gives priority to formats that have an audio stream
ie_pref: The format preference
lang: The language preference
quality: The quality of the format
source: The preference of the source
proto: Protocol used for download (https/ftps > http/ftp >
m3u8_native/m3u8 > http_dash_segments> websocket_frag >
mms/rtsp > f4f/f4m)
vcodec: Video Codec (av01 > vp9.2 > vp9 > h265 > h264 > vp8
> h263 > theora > other)
acodec: Audio Codec (flac/alac > wav/aiff > opus > vorbis >
aac > mp4a > mp3 > ac4 > eac3 > ac3 > dts > other)
codec: Equivalent to vcodec,acodec
vext: Video Extension (mp4 > mov > webm > flv > other). If --
prefer-free-formats is used, webm is preferred.
aext: Audio Extension (m4a > aac > mp3 > ogg > opus > webm >
other). If --prefer-free-formats is used, the order changes to
ogg > opus > webm > mp3 > m4a > aac
ext: Equivalent to vext,aext
filesize: Exact filesize, if known in advance
fs_approx: Approximate filesize
size: Exact filesize if available, otherwise approximate filesize
height: Height of video
width: Width of video
res: Video resolution, calculated as the smallest dimension.
fps: Framerate of video

75/102

hdr: The dynamic range of the video (DV > HDR12 > HDR10+ >
HDR10 > HLG > SDR)
channels: The number of audio channels
tbr: Total average bitrate in KBit/s
vbr: Average video bitrate in KBit/s
abr: Average audio bitrate in KBit/s
br: Average bitrate in KBit/s, tbr/vbr/abr
asr: Audio sample rate in Hz

Deprecation warning: Many of these fields have (currently
undocumented) aliases, that may be removed in a future version. It
is recommended to use only the documented field names.

All fields, unless specified otherwise, are sorted in descending order.
To reverse this, prefix the field with a +. E.g. +res prefers format with
the smallest resolution. Additionally, you can suffix a preferred value
for the fields, separated by a :. E.g. res:720 prefers larger videos,
but no larger than 720p and the smallest video if there are no videos
less than 720p. For codec and ext, you can provide two preferred
values, the first for video and the second for audio. E.g.
+codec:avc:m4a (equivalent to +vcodec:avc,+acodec:m4a) sets the
video codec preference to h264 > h265 > vp9 > vp9.2 > av01 > vp8 >
h263 > theora and audio codec preference to mp4a > aac > vorbis >
opus > mp3 > ac3 > dts. You can also make the sorting prefer the
nearest values to the provided by using ~ as the delimiter. E.g.
filesize~1G prefers the format with filesize closest to 1 GiB.

The fields hasvid and ie_pref are always given highest priority in
sorting, irrespective of the user-defined order. This behaviour can be
changed by using --format-sort-force. Apart from these, the
default order used is:
lang,quality,res,fps,hdr:12,vcodec:vp9.2,channels,acodec,s

ize,br,asr,proto,ext,hasaud,source,id. The extractors may
override this default order, but they cannot override the user-
provided order.

76/102

Note that the default has vcodec:vp9.2; i.e. av1 is not preferred.
Similarly, the default for hdr is hdr:12; i.e. dolby vision is not
preferred. These choices are made since DV and AV1 formats are
not yet fully compatible with most devices. This may be changed in
the future as more devices become capable of smoothly playing
back these formats.

If your format selector is worst, the last item is selected after sorting.
This means it will select the format that is worst in all respects. Most
of the time, what you actually want is the video with the smallest
filesize instead. So it is generally better to use -f best -S
+size,+br,+res,+fps.

Tip: You can use the -v -F to see how the formats have been sorted
(worst to best).

Format Selection examples

77/102

Download and merge the best video-only format and the best
audio-only format,

or download the best combined format if video-only format is
not available
$ yt-dlp -f "bv+ba/b"

Download best format that contains video,
and if it doesn't already have an audio stream, merge it with
best audio-only format
$ yt-dlp -f "bv*+ba/b"

Same as above
$ yt-dlp

Download the best video-only format and the best audio-only
format without merging them
For this case, an output template should be used since

by default, bestvideo and bestaudio will have the same file
name.
$ yt-dlp -f "bv,ba" -o "%(title)s.f%(format_id)s.%(ext)s"

Download and merge the best format that has a video stream,
and all audio-only formats into one file
$ yt-dlp -f "bv*+mergeall[vcodec=none]" --audio-multistreams

Download and merge the best format that has a video stream,
and the best 2 audio-only formats into one file
$ yt-dlp -f "bv*+ba+ba.2" --audio-multistreams

The following examples show the old method (without -S) of
format selection

and how to use -S to achieve a similar but (generally) better
result

Download the worst video available (old method)

$ yt-dlp -f "wv*+wa/w"

Download the best video available but with the smallest
resolution

$ yt-dlp -S "+res"

Download the smallest video available

78/102

$ yt-dlp -S "+size,+br"

Download the best mp4 video available, or the best video if
no mp4 available

$ yt-dlp -f "bv*[ext=mp4]+ba[ext=m4a]/b[ext=mp4] / bv*+ba/b"

Download the best video with the best extension
(For video, mp4 > mov > webm > flv. For audio, m4a > aac >

mp3 ...)
$ yt-dlp -S "ext"

Download the best video available but no better than 480p,
or the worst video if there is no video under 480p

$ yt-dlp -f "bv*[height<=480]+ba/b[height<=480] / wv*+ba/w"

Download the best video available with the largest height but
no better than 480p,

or the best video with the smallest resolution if there is no
video under 480p
$ yt-dlp -S "height:480"

Download the best video available with the largest resolution
but no better than 480p,
or the best video with the smallest resolution if there is no
video under 480p

Resolution is determined by using the smallest dimension.
So this works correctly for vertical videos as well
$ yt-dlp -S "res:480"

Download the best video (that also has audio) but no bigger

than 50 MB,
or the worst video (that also has audio) if there is no video
under 50 MB
$ yt-dlp -f "b[filesize<50M] / w"

Download largest video (that also has audio) but no bigger
than 50 MB,

79/102

or the smallest video (that also has audio) if there is no
video under 50 MB

$ yt-dlp -f "b" -S "filesize:50M"

Download best video (that also has audio) that is closest in
size to 50 MB

$ yt-dlp -f "b" -S "filesize~50M"

Download best video available via direct link over HTTP/HTTPS
protocol,
or the best video available via any protocol if there is no
such video

$ yt-dlp -f "(bv*+ba/b)[protocol^=http][protocol!*=dash] /
(bv*+ba/b)"

Download best video available via the best protocol
(https/ftps > http/ftp > m3u8_native > m3u8 >
http_dash_segments ...)
$ yt-dlp -S "proto"

Download the best video with either h264 or h265 codec,

or the best video if there is no such video
$ yt-dlp -f "(bv*[vcodec~='^((he|a)vc|h26[45])']+ba) /
(bv*+ba/b)"

Download the best video with best codec no better than h264,
or the best video with worst codec if there is no such video
$ yt-dlp -S "codec:h264"

Download the best video with worst codec no worse than h264,
or the best video with best codec if there is no such video
$ yt-dlp -S "+codec:h264"

More complex examples

Download the best video no better than 720p preferring
framerate greater than 30,

80/102

MODIFYING METADATA

The metadata obtained by the extractors can be modified by using -
-parse-metadata and --replace-in-metadata

--replace-in-metadata FIELDS REGEX REPLACE is used to replace
text in any metadata field using python regular expression.
Backreferences can be used in the replace string for advanced use.

The general syntax of --parse-metadata FROM:TO is to give the
name of a field or an output template to extract data from, and the
format to interpret it as, separated by a colon :. Either a python
regular expression with named capture groups, a single field name,
or a similar syntax to the output template (only %(field)s formatting
is supported) can be used for TO. The option can be used multiple
times to parse and modify various fields.

or the worst video (still preferring framerate greater than
30) if there is no such video

$ yt-dlp -f "((bv*[fps>30]/bv*)[height<=720]/(wv*[fps>30]/wv*))
+ ba / (b[fps>30]/b)[height<=720]/(w[fps>30]/w)"

Download the video with the largest resolution no better than

720p,
or the video with the smallest resolution available if there
is no such video,
preferring larger framerate for formats with the same

resolution
$ yt-dlp -S "res:720,fps"

Download the video with smallest resolution no worse than
480p,

or the video with the largest resolution available if there
is no such video,
preferring better codec and then larger total bitrate for the
same resolution

$ yt-dlp -S "+res:480,codec,br"

https://docs.python.org/3/library/re.html#regular-expression-syntax
https://docs.python.org/3/library/re.html?highlight=backreferences#re.sub
https://docs.python.org/3/library/re.html#regular-expression-syntax

81/102

Note that these options preserve their relative order, allowing
replacements to be made in parsed fields and viceversa. Also, any
field thus created can be used in the output template and will also
affect the media file's metadata added when using --embed-
metadata.

This option also has a few special uses:

You can download an additional URL based on the metadata of
the currently downloaded video. To do this, set the field
additional_urls to the URL that you want to download. E.g. --
parse-metadata "description:(?

P<additional_urls>https?://www\.vimeo\.com/\d+)" will
download the first vimeo video found in the description

You can use this to change the metadata that is embedded in
the media file. To do this, set the value of the corresponding field
with a meta_ prefix. For example, any value you set to
meta_description field will be added to the description field in
the file - you can use this to set a different "description" and
"synopsis". To modify the metadata of individual streams, use
the meta<n>_ prefix (e.g. meta1_language). Any value set to the
meta_ field will overwrite all default values.

Note: Metadata modification happens before format selection, post-
extraction and other post-processing operations. Some fields may be
added or changed during these steps, overriding your changes.

For reference, these are the fields yt-dlp adds by default to the file
metadata:

Metadata fields From

title track or title

date upload_date

description, synopsis description

purl, comment webpage_url

82/102

Metadata fields From

track track_number

artist artist, creator, uploader or uploader_id

genre genre

album album

album_artist album_artist

disc disc_number

show series

season_number season_number

episode_id episode or episode_id

episode_sort episode_number

language of each stream the format's language

Note: The file format may not support some of these fields

Modifying metadata examples

83/102

EXTRACTOR ARGUMENTS

Some extractors accept additional arguments which can be passed
using --extractor-args KEY:ARGS. ARGS is a ; (semicolon)
separated string of ARG=VAL1,VAL2. E.g. --extractor-args
"youtube:player-

client=android_embedded,web;include_live_dash" --
extractor-args "funimation:version=uncut"

Interpret the title as "Artist - Title"
$ yt-dlp --parse-metadata "title:%(artist)s - %(title)s"

Regex example
$ yt-dlp --parse-metadata "description:Artist - (?P<artist>.+)"

Set title as "Series name S01E05"
$ yt-dlp --parse-metadata "%(series)s S%(season_number)02dE%
(episode_number)02d:%(title)s"

Prioritize uploader as the "artist" field in video metadata
$ yt-dlp --parse-metadata "%(uploader|)s:%(meta_artist)s" --
embed-metadata

Set "comment" field in video metadata using description
instead of webpage_url,
handling multiple lines correctly

$ yt-dlp --parse-metadata "description:(?s)(?
P<meta_comment>.+)" --embed-metadata

Do not set any "synopsis" in the video metadata

$ yt-dlp --parse-metadata ":(?P<meta_synopsis>)"

Remove "formats" field from the infojson by setting it to an
empty string

$ yt-dlp --parse-metadata "video::(?P<formats>)" --write-info-
json

Replace all spaces and "_" in title and uploader with a `-`

$ yt-dlp --replace-in-metadata "title,uploader" "[_]" "-"

84/102

Note: In CLI, ARG can use - instead of _; e.g. youtube:player-
client" becomes youtube:player_client"

The following extractors use this feature:

youtube

lang: Prefer translated metadata (title, description etc) of
this language code (case-sensitive). By default, the video
primary language metadata is preferred, with a fallback to en
translated. See youtube.py for list of supported content language
codes
skip: One or more of hls, dash or translated_subs to skip
extraction of the m3u8 manifests, dash manifests and auto-
translated subtitles respectively
player_client: Clients to extract video data from. The main
clients are web, android and ios with variants _music,
_embedded, _embedscreen, _creator (e.g. web_embedded); and
mweb and tv_embedded (agegate bypass) with no variants. By
default, ios,android,web is used, but tv_embedded and
creator variants are added as required for age-gated videos.
Similarly, the music variants are added for music.youtube.com
urls. You can use all to use all the clients, and default for the
default clients.
player_skip: Skip some network requests that are generally
needed for robust extraction. One or more of configs (skip
client configs), webpage (skip initial webpage), js (skip js player).
While these options can help reduce the number of requests
needed or avoid some rate-limiting, they could cause some
issues. See #860 for more details
player_params: YouTube player parameters to use for player
requests. Will overwrite any default ones set by yt-dlp.
comment_sort: top or new (default) - choose comment sorting
mode (on YouTube's side)

https://github.com/yt-dlp/yt-dlp/blob/c26f9b991a0681fd3ea548d535919cec1fbbd430/yt_dlp/extractor/youtube.py#L381-L390
https://github.com/yt-dlp/yt-dlp/issues/4090#issuecomment-1158102032
https://github.com/yt-dlp/yt-dlp/pull/860

85/102

max_comments: Limit the amount of comments to gather.
Comma-separated list of integers representing max-
comments,max-parents,max-replies,max-replies-per-

thread. Default is all,all,all,all
E.g. all,all,1000,10 will get a maximum of 1000 replies
total, with up to 10 replies per thread. 1000,all,100 will get
a maximum of 1000 comments, with a maximum of 100
replies total

formats: Change the types of formats to return. dashy (convert
HTTP to DASH), duplicate (identical content but different URLs
or protocol; includes dashy), incomplete (cannot be
downloaded completely - live dash and post-live m3u8)
innertube_host: Innertube API host to use for all API requests;
e.g. studio.youtube.com, youtubei.googleapis.com. Note that
cookies exported from one subdomain will not work on others
innertube_key: Innertube API key to use for all API requests

youtubetab (YouTube playlists, channels, feeds, etc.)

skip: One or more of webpage (skip initial webpage download),
authcheck (allow the download of playlists requiring
authentication when no initial webpage is downloaded. This may
cause unwanted behavior, see #1122 for more details)
approximate_date: Extract approximate upload_date and
timestamp in flat-playlist. This may cause date-based filters to
be slightly off

generic

fragment_query: Passthrough any query in mpd/m3u8 manifest
URLs to their fragments if no value is provided, or else apply the
query string given as fragment_query=VALUE. Does not apply to
ffmpeg
variant_query: Passthrough the master m3u8 URL query to its
variant playlist URLs if no value is provided, or else apply the
query string given as variant_query=VALUE

https://github.com/yt-dlp/yt-dlp/pull/1122

86/102

hls_key: An HLS AES-128 key URI or key (as hex), and
optionally the IV (as hex), in the form of (URI|KEY)[,IV]; e.g.
generic:hls_key=ABCDEF1234567980,0xFEDCBA0987654321.
Passing any of these values will force usage of the native HLS
downloader and override the corresponding values found in the
m3u8 playlist
is_live: Bypass live HLS detection and manually set
live_status - a value of false will set not_live, any other
value (or no value) will set is_live

funimation

language: Audio languages to extract, e.g.
funimation:language=english,japanese

version: The video version to extract - uncut or simulcast

crunchyrollbeta (Crunchyroll)

format: Which stream type(s) to extract (default: adaptive_hls).
Potentially useful values include adaptive_hls, adaptive_dash,
vo_adaptive_hls, vo_adaptive_dash, download_hls,
download_dash, multitrack_adaptive_hls_v2
hardsub: Preference order for which hardsub versions to extract,
or all (default: None = no hardsubs), e.g.
crunchyrollbeta:hardsub=en-US,None

vikichannel

video_types: Types of videos to download - one or more of
episodes, movies, clips, trailers

niconico

segment_duration: Segment duration in milliseconds for HLS-
DMC formats. Use it at your own risk since this feature may
result in your account termination.

youtubewebarchive

87/102

check_all: Try to check more at the cost of more requests. One
or more of thumbnails, captures

gamejolt

comment_sort: hot (default), you (cookies needed), top, new -
choose comment sorting mode (on GameJolt's side)

hotstar

res: resolution to ignore - one or more of sd, hd, fhd
vcodec: vcodec to ignore - one or more of h264, h265, dvh265
dr: dynamic range to ignore - one or more of sdr, hdr10, dv

tiktok

api_hostname: Hostname to use for mobile API requests, e.g.
api-h2.tiktokv.com

app_version: App version to call mobile APIs with - should be
set along with manifest_app_version, e.g. 20.2.1
manifest_app_version: Numeric app version to call mobile
APIs with, e.g. 221

rokfinchannel

tab: Which tab to download - one of new, top, videos, podcasts,
streams, stacks

twitter

legacy_api: Force usage of the legacy Twitter API instead of
the GraphQL API for tweet extraction. Has no effect if login
cookies are passed

stacommu, wrestleuniverse

device_id: UUID value assigned by the website and used to
enforce device limits for paid livestream content. Can be found
in browser local storage

twitch

88/102

client_id: Client ID value to be sent with GraphQL requests,
e.g. twitch:client_id=kimne78kx3ncx6brgo4mv6wki5h1ko

nhkradirulive (NHK らじる★らじる LIVE)

area: Which regional variation to extract. Valid areas are:
sapporo, sendai, tokyo, nagoya, osaka, hiroshima, matsuyama,
fukuoka. Defaults to tokyo

Note: These options may be changed/removed in the future without
concern for backward compatibility

PLUGINS

Note that all plugins are imported even if not invoked, and that there
are no checks performed on plugin code. Use plugins at your own
risk and only if you trust the code!

Plugins can be of <type>s extractor or postprocessor.

Extractor plugins do not need to be enabled from the CLI and
are automatically invoked when the input URL is suitable for it.
Extractor plugins take priority over builtin extractors.
Postprocessor plugins can be invoked using --use-
postprocessor NAME.

Plugins are loaded from the namespace packages
yt_dlp_plugins.extractor and yt_dlp_plugins.postprocessor.

In other words, the file structure on the disk looks something like:

yt-dlp looks for these yt_dlp_plugins namespace folders in many
locations (see below) and loads in plugins from all of them.

 yt_dlp_plugins/
 extractor/
 myplugin.py
 postprocessor/

 myplugin.py

89/102

See the wiki for some known plugins

Installing Plugins

Plugins can be installed using various methods and locations.

1. Configuration directories: Plugin packages (containing a
yt_dlp_plugins namespace folder) can be dropped into the
following standard configuration locations:

User Plugins
${XDG_CONFIG_HOME}/yt-dlp/plugins/<package

name>/yt_dlp_plugins/ (recommended on
Linux/macOS)
${XDG_CONFIG_HOME}/yt-dlp-plugins/<package

name>/yt_dlp_plugins/

${APPDATA}/yt-dlp/plugins/<package

name>/yt_dlp_plugins/ (recommended on Windows)
${APPDATA}/yt-dlp-plugins/<package

name>/yt_dlp_plugins/

~/.yt-dlp/plugins/<package

name>/yt_dlp_plugins/

~/yt-dlp-plugins/<package name>/yt_dlp_plugins/

System Plugins
/etc/yt-dlp/plugins/<package

name>/yt_dlp_plugins/

/etc/yt-dlp-plugins/<package

name>/yt_dlp_plugins/

https://github.com/yt-dlp/yt-dlp/wiki/Plugins

90/102

2. Executable location: Plugin packages can similarly be installed
in a yt-dlp-plugins directory under the executable location
(recommended for portable installations):

Binary: where <root-dir>/yt-dlp.exe, <root-dir>/yt-
dlp-plugins/<package name>/yt_dlp_plugins/

Source: where <root-dir>/yt_dlp/__main__.py, <root-
dir>/yt-dlp-plugins/<package name>/yt_dlp_plugins/

3. pip and other locations in PYTHONPATH

Plugin packages can be installed and managed using pip.
See yt-dlp-sample-plugins for an example.

Note: plugin files between plugin packages installed
with pip must have unique filenames.

Any path in PYTHONPATH is searched in for the
yt_dlp_plugins namespace folder.

Note: This does not apply for Pyinstaller/py2exe builds.

.zip, .egg and .whl archives containing a yt_dlp_plugins
namespace folder in their root are also supported as plugin
packages.

e.g. ${XDG_CONFIG_HOME}/yt-dlp/plugins/mypluginpkg.zip
where mypluginpkg.zip contains
yt_dlp_plugins/<type>/myplugin.py

Run yt-dlp with --verbose to check if the plugin has been loaded.

Developing Plugins

See the yt-dlp-sample-plugins repo for a template plugin package
and the Plugin Development section of the wiki for a plugin
development guide.

All public classes with a name ending in IE/PP are imported from
each file for extractors and postprocessors repectively. This respects
underscore prefix (e.g. _MyBasePluginIE is private) and __all__.

https://github.com/yt-dlp/yt-dlp-sample-plugins
https://github.com/yt-dlp/yt-dlp-sample-plugins
https://github.com/yt-dlp/yt-dlp/wiki/Plugin-Development

91/102

Modules can similarly be excluded by prefixing the module name
with an underscore (e.g. _myplugin.py).

To replace an existing extractor with a subclass of one, set the
plugin_name class keyword argument (e.g. class
MyPluginIE(ABuiltInIE, plugin_name='myplugin') will replace
ABuiltInIE with MyPluginIE). Since the extractor replaces the
parent, you should exclude the subclass extractor from being
imported separately by making it private using one of the methods
described above.

If you are a plugin author, add yt-dlp-plugins as a topic to your
repository for discoverability.

See the Developer Instructions on how to write and test an extractor.

EMBEDDING YT-DLP

yt-dlp makes the best effort to be a good command-line program,
and thus should be callable from any programming language.

Your program should avoid parsing the normal stdout since they may
change in future versions. Instead they should use options such as -
J, --print, --progress-template, --exec etc to create console
output that you can reliably reproduce and parse.

From a Python program, you can embed yt-dlp in a more powerful
fashion, like this:

Most likely, you'll want to use various options. For a list of options
available, have a look at yt_dlp/YoutubeDL.py or
help(yt_dlp.YoutubeDL) in a Python shell. If you are already

from yt_dlp import YoutubeDL

URLS = ['https://www.youtube.com/watch?v=BaW_jenozKc']

with YoutubeDL() as ydl:
 ydl.download(URLS)

https://github.com/topics/yt-dlp-plugins
https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#developer-instructions
https://github.com/yt-dlp/yt-dlp/blob/master/yt_dlp/YoutubeDL.py#L183

92/102

familiar with the CLI, you can use devscripts/cli_to_api.py to
translate any CLI switches to YoutubeDL params.

Tip: If you are porting your code from youtube-dl to yt-dlp, one
important point to look out for is that we do not guarantee the return
value of YoutubeDL.extract_info to be json serializable, or even be
a dictionary. It will be dictionary-like, but if you want to ensure it is a
serializable dictionary, pass it through YoutubeDL.sanitize_info as
shown in the example below

Embedding examples

Extracting information

Download using an info-json

import json
import yt_dlp

URL = 'https://www.youtube.com/watch?v=BaW_jenozKc'

ℹ See help(yt_dlp.YoutubeDL) for a list of available options
and public functions

ydl_opts = {}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
 info = ydl.extract_info(URL, download=False)

 # ℹ ydl.sanitize_info makes the info json-serializable
 print(json.dumps(ydl.sanitize_info(info)))

import yt_dlp

INFO_FILE = 'path/to/video.info.json'

with yt_dlp.YoutubeDL() as ydl:

 error_code = ydl.download_with_info_file(INFO_FILE)

print('Some videos failed to download' if error_code
 else 'All videos successfully downloaded')

https://github.com/yt-dlp/yt-dlp/blob/master/devscripts/cli_to_api.py

93/102

Extract audio

Filter videos

Adding logger and progress hook

import yt_dlp

URLS = ['https://www.youtube.com/watch?v=BaW_jenozKc']

ydl_opts = {
 'format': 'm4a/bestaudio/best',

 # ℹ See help(yt_dlp.postprocessor) for a list of available
Postprocessors and their arguments
 'postprocessors': [{ # Extract audio using ffmpeg
 'key': 'FFmpegExtractAudio',

 'preferredcodec': 'm4a',
 }]
}

with yt_dlp.YoutubeDL(ydl_opts) as ydl:
 error_code = ydl.download(URLS)

import yt_dlp

URLS = ['https://www.youtube.com/watch?v=BaW_jenozKc']

def longer_than_a_minute(info, *, incomplete):

 """Download only videos longer than a minute (or with
unknown duration)"""
 duration = info.get('duration')
 if duration and duration < 60:

 return 'The video is too short'

ydl_opts = {
 'match_filter': longer_than_a_minute,

}

with yt_dlp.YoutubeDL(ydl_opts) as ydl:
 error_code = ydl.download(URLS)

94/102

Add a custom PostProcessor

import yt_dlp

URLS = ['https://www.youtube.com/watch?v=BaW_jenozKc']

class MyLogger:
 def debug(self, msg):

 # For compatibility with youtube-dl, both debug and
info are passed into debug
 # You can distinguish them by the prefix '[debug] '
 if msg.startswith('[debug] '):

 pass
 else:
 self.info(msg)

 def info(self, msg):
 pass

 def warning(self, msg):
 pass

 def error(self, msg):

 print(msg)

ℹ See "progress_hooks" in help(yt_dlp.YoutubeDL)

def my_hook(d):
 if d['status'] == 'finished':
 print('Done downloading, now post-processing ...')

ydl_opts = {
 'logger': MyLogger(),

 'progress_hooks': [my_hook],
}

with yt_dlp.YoutubeDL(ydl_opts) as ydl:

 ydl.download(URLS)

95/102

Use a custom format selector

import yt_dlp

URLS = ['https://www.youtube.com/watch?v=BaW_jenozKc']

ℹ See help(yt_dlp.postprocessor.PostProcessor)
class MyCustomPP(yt_dlp.postprocessor.PostProcessor):

 def run(self, info):
 self.to_screen('Doing stuff')
 return [], info

with yt_dlp.YoutubeDL() as ydl:
 # ℹ "when" can take any value in
yt_dlp.utils.POSTPROCESS_WHEN

 ydl.add_post_processor(MyCustomPP(), when='pre_process')
 ydl.download(URLS)

96/102

import yt_dlp

URLS = ['https://www.youtube.com/watch?v=BaW_jenozKc']

def format_selector(ctx):
 """ Select the best video and the best audio that won't

result in an mkv.
 NOTE: This is just an example and does not handle all cases
"""

 # formats are already sorted worst to best
 formats = ctx.get('formats')[::-1]

 # acodec='none' means there is no audio

 best_video = next(f for f in formats
 if f['vcodec'] != 'none' and f['acodec']
== 'none')

 # find compatible audio extension
 audio_ext = {'mp4': 'm4a', 'webm': 'webm'}
[best_video['ext']]

 # vcodec='none' means there is no video
 best_audio = next(f for f in formats if (
 f['acodec'] != 'none' and f['vcodec'] == 'none' and
f['ext'] == audio_ext))

 # These are the minimum required fields for a merged format
 yield {
 'format_id': f'{best_video["format_id"]}+

{best_audio["format_id"]}',
 'ext': best_video['ext'],
 'requested_formats': [best_video, best_audio],

 # Must be + separated list of protocols
 'protocol': f'{best_video["protocol"]}+
{best_audio["protocol"]}'
 }

ydl_opts = {
 'format': format_selector,

}

97/102

DEPRECATED OPTIONS

These are all the deprecated options and the current alternative to
achieve the same effect

Almost redundant options

While these options are almost the same as their new counterparts,
there are some differences that prevents them being redundant

Redundant options

While these options are redundant, they are still expected to be used
due to their ease of use

with yt_dlp.YoutubeDL(ydl_opts) as ydl:
 ydl.download(URLS)

-j, --dump-json --print "%()j"

-F, --list-formats --print formats_table
--list-thumbnails --print thumbnails_table --
print playlist:thumbnails_table

--list-subs --print
automatic_captions_table --print subtitles_table

98/102

Not recommended

While these options still work, their use is not recommended since
there are other alternatives to achieve the same

--get-description --print description
--get-duration --print duration_string

--get-filename --print filename
--get-format --print format
--get-id --print id
--get-thumbnail --print thumbnail

-e, --get-title --print title
-g, --get-url --print urls
--match-title REGEX --match-filter "title ~= (?
i)REGEX"

--reject-title REGEX --match-filter "title !~= (?
i)REGEX"
--min-views COUNT --match-filter "view_count >=?
COUNT"

--max-views COUNT --match-filter "view_count <=?
COUNT"
--break-on-reject Use --break-match-filter

--user-agent UA --add-header "User-Agent:UA"
--referer URL --add-header "Referer:URL"
--playlist-start NUMBER -I NUMBER:
--playlist-end NUMBER -I :NUMBER

--playlist-reverse -I ::-1
--no-playlist-reverse Default
--no-colors --color no_color

99/102

Developer options

These options are not intended to be used by the end-user

--force-generic-extractor --ies generic,default
--exec-before-download CMD --exec "before_dl:CMD"

--no-exec-before-download --no-exec
--all-formats -f all
--all-subs --sub-langs all --write-subs
--print-json -j --no-simulate

--autonumber-size NUMBER Use string formatting, e.g. %
(autonumber)03d
--autonumber-start NUMBER Use internal field formatting
like %(autonumber+NUMBER)s

--id -o "%(id)s.%(ext)s"
--metadata-from-title FORMAT --parse-metadata "%
(title)s:FORMAT"
--hls-prefer-native --downloader "m3u8:native"

--hls-prefer-ffmpeg --downloader "m3u8:ffmpeg"
--list-formats-old --compat-options list-formats
(Alias: --no-list-formats-as-table)

--list-formats-as-table --compat-options -list-formats
[Default] (Alias: --no-list-formats-old)
--youtube-skip-dash-manifest --extractor-args
"youtube:skip=dash" (Alias: --no-youtube-include-dash-manifest)

--youtube-skip-hls-manifest --extractor-args
"youtube:skip=hls" (Alias: --no-youtube-include-hls-manifest)
--youtube-include-dash-manifest Default (Alias: --no-youtube-
skip-dash-manifest)

--youtube-include-hls-manifest Default (Alias: --no-youtube-
skip-hls-manifest)
--geo-bypass --xff "default"
--no-geo-bypass --xff "never"

--geo-bypass-country CODE --xff CODE
--geo-bypass-ip-block IP_BLOCK --xff IP_BLOCK

100/102

Old aliases

These are aliases that are no longer documented for various
reasons

Sponskrub Options

Support for SponSkrub has been deprecated in favor of the --
sponsorblock options

--test Download only part of video
for testing extractors

--load-pages Load pages dumped by --write-
pages
--youtube-print-sig-code For testing youtube signatures
--allow-unplayable-formats List unplayable formats also

--no-allow-unplayable-formats Default

--avconv-location --ffmpeg-location
--clean-infojson --clean-info-json

--cn-verification-proxy URL --geo-verification-proxy URL
--dump-headers --print-traffic
--dump-intermediate-pages --dump-pages
--force-write-download-archive --force-write-archive

--load-info --load-info-json
--no-clean-infojson --no-clean-info-json
--no-split-tracks --no-split-chapters
--no-write-srt --no-write-subs

--prefer-unsecure --prefer-insecure
--rate-limit RATE --limit-rate RATE
--split-tracks --split-chapters

--srt-lang LANGS --sub-langs LANGS
--trim-file-names LENGTH --trim-filenames LENGTH
--write-srt --write-subs
--yes-overwrites --force-overwrites

https://github.com/faissaloo/SponSkrub

101/102

No longer supported

These options may no longer work as intended

Removed

These options were deprecated since 2014 and have now been
entirely removed

CONTRIBUTING

See CONTRIBUTING.md for instructions on Opening an Issue and
Contributing code to the project

WIKI

--sponskrub --sponsorblock-mark all
--no-sponskrub --no-sponsorblock

--sponskrub-cut --sponsorblock-remove all
--no-sponskrub-cut --sponsorblock-remove -all
--sponskrub-force Not applicable
--no-sponskrub-force Not applicable

--sponskrub-location Not applicable
--sponskrub-args Not applicable

--prefer-avconv avconv is not officially
supported by yt-dlp (Alias: --no-prefer-ffmpeg)

--prefer-ffmpeg Default (Alias: --no-prefer-
avconv)
-C, --call-home Not implemented

--no-call-home Default
--include-ads No longer supported
--no-include-ads Default
--write-annotations No supported site has

annotations now
--no-write-annotations Default
--compat-options seperate-video-versions No longer needed

-A, --auto-number -o "%(autonumber)s-%(id)s.%
(ext)s"
-t, -l, --title, --literal -o "%(title)s-%(id)s.%(ext)s"

https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#contributing-to-yt-dlp
https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue
https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#developer-instructions

102/102

See the Wiki for more information

https://github.com/yt-dlp/yt-dlp/wiki

