
CZNIC Labs Technical Report number 1/2009

Signing of DNS zone using CUDA GPU
Matej Dioszegi
26th June 2009

Abstract

This paper describes the possibility of signing a DNS zone using CUDA (Common Unified Device

Access) capable GPU. CUDA capable GPUs are available for more than two years. Their advantage is their

relatively low price and high computing power based on parallelism.

As the process of signing a zone can be split up into independent pieces, it seems that parallelism pro

vided by CUDA capable GPUs could potentially speed up whole process. On the other side, processors on

the GPU are not as fast the CPU, memory access is slower and the GPUs are optimized to use floating

point numbers, not integers, which are used in RSA and DSA.

Keywords: DNSSEC, zone signing, CUDA

Introduction

CUDA is technology introduced by nVidia company. They start to produce CUDA capable GPUs in

2007. Nowadays, over 100 million of these device have been sold worldwide. The newest product with

name Tesla does not have any graphical output, it is used as a dedicated device for computing of complex

problems providing 30 multiprocessors with 8 cores each. That means 240 parallel computations in parallel.

CUDA allows programmer to use GPU (called device. Computer which the device is present at, is called

a host) as a standard computer. The programmer does not have to convert the problem into domain of com

puter graphics as it is common when using GPUs without CUDA capability. Device provides CUDA instruc

1

Signing of DNS zone

using CUDA GPU

tion set architecture, CUDA toolkit provides extension to C language. Programmer writes standard C func

tions that are compiled by special compiler and then executed on the device.

Main advantage of GPUs is high number of processors. Tesla contains 30 multiprocessor with 8 cores

each. Our device nVidia GeForce 9800 GTX+ contains 16 multiprocessors with 8 cores each.

Function, that is called from host and runs on the GPU device is called kernel. When a kernel is

launched, programmer specifies its dimensions in how many blocks (dimension of a grid) and in how many

threads per block (dimension of block) the code is going to run. The blocks are then physically mapped on

the multiprocessors and the threads in block are mapped to the cores. Threads on device cores are

2

Signing of DNS zone

using CUDA GPU

Illustration 1: Hardware model

extremely lightweight, their switching is faster than switching of CPU thread. Each thread has an unique

identifier, which is computed from identifier of the block, which contains the thread and identifier of thread

within the block. Each thread executes code of the kernel.

If the number of blocks that are specified by programmer is bigger than number of multiprocessors, the

blocks “wait” until other finishes and then are run on the free multiprocessor. It is recommended to adjust

dimensions of kernel to the parameters of used device.

3

Signing of DNS zone

using CUDA GPU

Illustration 2: Memory hierarchy

Device has global memory, which can be accessed by each core. There is also shared memory avail

able for each multiprocessor. This shared memory acts as a software managed cache. Size of shared mem

ory nowadays is 16K. Cores on one multiprocessor could cooperate through this shared memory. CUDA

provides barrier synchronization primitive to support this cooperation. For each core there are private regis

ters, where the core stores local data.

Access to the global device memory is not recommended as this access is much more slower than

access to the shared memory on multiprocessor.

Motivation

Process of zone signing consist of more steps. RRsets have to be sorted into canonical order and each

RRset has to be processed by some algorithm of asymmetric cryptography (RSA or DSA) – output of this

algorithm is the digital signature of the RRset.

RRsets are independent on each other. They do not have to be signed in serial order. Here comes the

idea of signing RRsets on the GPU, using CUDA. Each thread running on one of many GPU's cores would

sign one RRset. As the number of cores on GPU is significantly higher than number of cores on CPU, whole

process will finish faster.

Another advantage of using CUDA capable GPU is the price of the device. There exist devices capable

of fast RSA signing, but their price is higher than price of a CUDA capable GPU. CUDA capable cards are

also available worldwide. More than 100 million devices were sold during last two years.

It is easier for zone administrator to obtain a CUDA GPU and install it, than obtaining and installing

RSA/DSA dedicated device.

Device requirements

Signing a DNS zone on the device brings some issues that have to be discussed.

A programmer cannot call methods from libraries present at the host in the device code. That implies

programming of signature algorithms (RSA and DSA) by programmer alone.

Minimal requirements for those algorithms are:

4

Signing of DNS zone

using CUDA GPU

– suitable representation of big numbers (multiprecision integers) in the device environment

– algorithm for fast adding of big numbers

– algorithm for fast multiplication and exponentiation of big numbers

There exist more algorithms that solve those mathematical problems (e.g. Montgomery multiplication

and exponentiation).

RRset is not signed directly, however it's SHA1 hash is calculated. Calculation of this value could be

executed on the device. That would imply implementation of SHA1 algorithm (or other SHA algorithms when

the DNSSEC standards change) on the device.

Research and results

As a feasibility study, core of RSA signature algorithm was implemented on the device and compared

with openSSL implementation.

Core of the RSA is exponentiation of multiprecision integers (called big numbers) modulo m. Computa

tion of signature is:

signature = data pe modulo m

where

– data is the message signed (hash of RRset in our case)

– pe is private exponent of the signing key.

– m is the public modulus of signing key

Modulus and exponent are big numbers. Their length is usually 1024, 2048 or 4096 bits. In this report,

2048 bit keys were used at implementation.

This exponentiation cannot be computed in a “standard” way because of the length of the numbers. This

approach would consume a lot of time and also memory space.

5

Signing of DNS zone

using CUDA GPU

For the exponentiation the Montgomery exponentiation algorithm described in Handbook of Applied

Cryptography was used. Approximate time complexity of this algorithm is O(n3), where n is the length of

signing key, but it does not need more than (n+1) bytes of memory for one computed number.

Code executing on the device has also some limitations.

– cores are less powerful than CPU cores and are optimized for floating point numbers calculation

– device is intended to use in application with high arithmetic frequency with minimum memory access

– memory access to the device global memory and shared memory on the multiprocessor differs sig

nificantly

– code executed on device should not contain many jumps as the cores does not have dynamic

branch prediction, which results from the CUDA execution rules

– shared memory access should use specific rules stated in CUDA Programming reference to gain

optimal performance

Unfortunately, big number arithmetic does not meet some of these requirement on performance. At first,

it needs many memory accesses. Big numbers are stored in arrays and each operation on them needs to

run through the whole array. This makes for 2048 bit keys 256 shared memory reads per one adding opera

tion.

As it was mentioned, access to device global memory is slow in comparison with shared memory.

Therefore, all the computations have to be performed in shared memory. Shared memory on a CUDA multi

processor has nowadays only 16K. When calculating with 2048 bit keys, one number takes 256 bytes (plus

1 byte required for Montgomery multiplication) of memory for its representation. It means that shared mem

ory can hold only 63 big numbers.

It must be considered, that for the Montgomery exponentiation we need place for 7 big numbers – data

that are signed, exponent, modulus, place for values r2 = R2 mod m, x' and big number representing 1

required by Montgomery exponentiation algorithm and one temporal working space.

This is the factor that mostly influences number of parallel RSA computations on one multiprocessor.

There is place for 63 numbers (in 2048bit key case) and each computation (thread) needs 7 numbers. Val

6

Signing of DNS zone

using CUDA GPU

ues of exponent, modulus, “big 1”, r2 can be shared among the threads, but the place for data, x' and tem

poral must be allocated exclusively for each thread. Therefore number of parallel RSA computations on one

multiprocessor is (634) div 3 = 19 computations for 2048 bit key.

Latest devices (Tesla) provides 30 multiprocessors, allowing the output of nearly 600 RSA signatures in

parallel in a time needed by one device thread to compute RSA signature.

Crucial information now becomes the time for one RSA signature calculation. Here come in play other

limitations of the device – speed of cores and shared memory access rules.

Experimental implementation needs about 94 seconds to compute one 2048 bit key signature, which is

about 32x slower that the same code executed on the CPU. OpenSSL provides even better results, test on

the same CPU shows that it can compute about 240 signatures per second.

Taking in consideration that Tesla has 30 multiprocessors, it can calculate 19x30 = 570 RSA (2048) sig

natures in 94 seconds, which is about 6 signatures per second.

DSA algorithm was not implemented, however it is unexpected that it will perform better in the device

environment.

Conclusion

Signing of DNS zone parallel using CUDA GPU is not a bad idea. However, it has some limitations

which result from the device architecture.

Biggest limitation is probably the background of the signing algorithm (RSA or DSA). Algorithms per

formed on the device should have high frequency of nonexpensive arithmetic with minimal memory access,

which is not achievable when using multiprecision integers needed by RSA and DSA.

Signing a DNS zone using current generation of CUDA GPUs will not bring any acceleration to the

process of zone signing in comparison with openSSL library.

7

Signing of DNS zone

using CUDA GPU

8

Signing of DNS zone

using CUDA GPU

	Signing of DNS zone using CUDA GPU
	CZNIC Labs Technical Report number 1/2009
	Signing of DNS zone using CUDA GPU
	Abstract
	Introduction
	Motivation
	Device requirements
	Research and results
	Conclusion

